

Production and Market of Glycine in China 2023

The Thirteenth Edition March 2024

Researched & Prepared by:

Kcomber Inc. Copyright by Kcomber Inc. Any publication, distribution or copying of the content in this report is prohibited.

Executive summary	1
Methodology	
1 Overview of glycine in China	
1.1 Introduction of glycine in China	4
1.2 Classification of glycine	5
2 Market situation of glycine in China	7
2.1 Supply of glycine in China	
2.1.1 Capacity and output of glycine in China	7
2.1.2 Key glycine producers in China	8
2.1.3 Potential production lines of glycine in China	15
2.2 Price of glycine in China	
2.2.1 Price of glycine in China, Jan. 2015–Dec. 2023	17
2.2.2 Factors influencing glycine price in China	19
2.2.3 Price trend of glycine in China	
2.3 Export of glycine in China, 2013–2019	21
2.4 Demand for glycine in China	25
2.4.1 Consumption of glycine in China	25
2.4.2 Major application segments of glycine in China	27
2.5 Raw materials for glycine production in China, 2023	31
2.5.1 Urotropine	31
2.5.2 Chloroacetic acid	32
2.6 Production technology of glycine	34
2.6.1 Brief introduction of the chloroacetic acid ammonolysis process	34
2.6.2 Brief introduction of the Strecker process	35
2.6.3 Brief introduction of the Hydantion process	35
2.6.4 Development trend of glycine technology	36
3 Forecast on glycine in China, 2024–2028	37
3.1 Influencing factors	37
3.2 Forecast on glycine supply in China	37
3.3 Forecast on glycine demand in China	37
4 Investment opportunities and suggestions	39
5 Profile of key glycine producers in China	
5.1 Hebei Donghua Chemical Group	
5.2 Hubei Trisun Chemical Co., Ltd. & Inner Mongolia Xingfa Technology Co., Ltd	
5.3 Fuhua Tongda Chemical Co., Ltd.	
5.4 Linyi Hongtai Chemical Co., Ltd	
5.5 Guang'an Chengxin Chemical Co., Ltd.	43
5.6 Henan HDF Chemical Co., Ltd	
5.7 Hebei Chuncheng Biological Technology Co., Ltd.	
5.8 Hebei Huaheng Biological Technology Co., Ltd.	
5.9 Shandong Zhenxing Chemical Industry Co., Ltd.	46
5.10 Hebei Huayang Biological Technology Co., Ltd.	46

Contents

LIST OF TABLES

Table 1.1-1 Supply and demand of glycine in China, 2014–2022Table 1.1-2 Supply and demand of glycine (tech-grade excluded) in China, 2014–2022

Table 1.2-1 Comparison on properties of Chinese glycine and overseas glycine Table 2.1.1-1 Capacity and output of glycine in China, 2014–2023 Table 2.1.2-1 Production for various grades of glycine in China by producers, 2023 Table 2.1.2-2 Capacity of glycine by producers in China, 2019–2023, t/a Table 2.1.2-3 Industrial concentration of tech-grade glycine in terms of output in China, 2019– 2023 Table 2.1.2-4 Output of glycine in China by producer, 2019–2023, tonne Table 2.1.2-5 Capacity utilization of glycine producer in China, 2019–2023 Table 2.1.3-1 Potential projects of glycine in China, as of Dec. 2023 Table 2.3-1 China's exports of glycine by destinations, 2019 Table 2.3-2 China's exports of glycine by exporter, 2019 Table 2.4.2.1-1 Capacity and output of glyphosate technical in China, 2014–2022 Table 2.4.2.1-2 Consumption of glycine in glyphosate in China, 2018–2022, tonne Table 2.4.2.1-3 Major glyphosate producers adopting glycine route in China, 2022 Table 2.4.2.1-4 Main glycine producers and consumers in glyphosate industry in China, 2023 Table 2.4.2.2-1 Main end-use segments of glycine in China's food industry Table 2.4.2.4-1 Main end-use segments of glycine in China's pharmaceutical industry Table 2.5.1-1 Main urotropine producers in China, 2023 Table 2.5.1-2 Industrial concentration of urotropine in terms of capacity in China, 2023 Table 2.5.2-1 Main chloroacetic acid producers in China, 2023 Table 2.5.2-2 Industrial concentration of chloroacetic acid in terms of capacity in China, 2023 Table 3.1-1 Major factors influencing China's glycine industry Table 4-1 Strengths and weaknesses of Chinese glycine industry Table 5.1-1 Capacity and output of glycine in Hebei Donghua, 2019–2023 Table 5.2-1 Capacity and output of glycine in Hubei Trisun, 2019–2023 Table 5.3-1 Capacity and output of glycine in Fuhua Tongda, 2019–2023 Table 5.4-1 Capacity and output of glycine in Linyi Hongtai, 2019–2023 Table 5.5-1 Capacity and output of glycine in Guang'an Chengxin, 2019–2023 Table 5.6-1 Capacity and output of glycine in Henan HDF, 2019–2023 Table 5.7-1 Capacity and output of glycine in Hebei Chuncheng, 2019–2023 Table 5.8-1 Capacity and output of glycine in Hebei Huaheng, 2019–2023 Table 5.9-1 Capacity and output of glycine in Shandong Zhenxing, 2019–2023 Table 5.10-1 Capacity and output of glycine in Hebei Huayang, 2019–2023

LIST OF FIGURES

Figure 2.1.2-1 Distribution of major glycine producers by capacity of tech-grade glycine in China, 2023

Figure 2.1.2-2 Distribution of major glycine producers by company number of tech-grade glycine in China, 2023

Figure 2.2.1-1 Monthly ex-works price of tech-grade glycine in China, Jan. 2015–Dec. 2023

Figure 2.2.1-2 Annual ex-works price of tech-grade glycine in China, 2019–2023

Figure 2.2.2-1 Monthly ex-works price of tech-grade glycine and glyphosate technical in China, Jan. 2015–Dec. 2023

Figure 2.3-1 China's export volume of various grades glycine, 2013–2019

Figure 2.3-2 Export prices of various grades of glycine in China, Jan. 2013–Dec. 2019

Figure 2.4.1-1 Consumption of tech-grade glycine in China, 2018–2022

Figure 2.4.1-2 Consumption of glycine of various grades in China, 2018–2022

Figure 2.4.1-3 Consumption pattern of glycine in China by application field, 2022

Figure 2.4.2.1-1 Output structure of glyphosate technical in China by production route, 2013–2022

Figure 2.6.1-1 Flowchart of chloroacetic acid ammonolysis process for glycine production

Figure 2.6.2-1 Flowchart of the Strecker process for glycine production

Figure 2.6.3-1 Flowchart of the Hydantion process for glycine production

Figure 3.2-1 Predicted capacity and output of tech-grade glycine in China, 2024–2028

Figure 3.3-1 Predicted market demand for glycine in China by grade, 2024–2028

Executive summary

China is one of the major production countries of glycine in the world, and four grades of glycine are produced here, namely tech-grade, food-grade, feed-grade and pharmaceutical-grade.

Currently, almost all Chinese glycine producers adopt chloroacetic acid ammonolysis process, but Guang'an Chengxin (formerly Guang'an Chengyang) adopts the Hydantion process, whose glycine production lines were built up in Nov. 2015.

Both the capacity and output of glycine in China kept increasing during 2014–2021, along with the steady development of glyphosate (glycine's key end-use segment) in China. The output of the tech-, feed- and food-grade glycine increased during this period in general. Additionally, the capacity of glycine was unchanged in 2022, with the output falling slightly compared with 2021. In 2023, the capacity saw an increase while the output dropped slightly.

In 2014-2023, the national capacity of tech-grade glycine increased from 347,000 t/a to 613,000 t/a, and its output increased from 241,000 tonnes in 2014 to 338,500 tonnes. However, China's glycine industry has often witnessed overcapacity in the past few years, and this situation is not expected to change much in the coming few years.

China's glycine is highly concentrated in production, while its upstream industries including both chloroacetic acid and urotropine are not. Hebei Donghua is the top glycine producer in China and even in Asia. In 2023, its tech-grade capacity accounted for nearly 21.2% of the national total (tech-grade).

Some glyphosate producers have built up glycine production lines for their glyphosate technical production.

- Hubei Trisun's 100,000 t/a glycine: firstly supplied to itself, and the rest sold to others
- Fuhua Tongda's 40,000 t/a glycine: mainly consumed by itself
- Inner Mongolia Xingfa's 10,000 t/a glycine: consumed by itself
- Henan HDF's 15,000 t/a glycine: mainly consumed by itself
- Guang'an Chengxin's 20,000 t/a glycine: mainly consumed by itself

The price of glycine is closely linked with that of glyphosate, because of glycine's limited consumption fields and simple production technology. Up to 2023, the ex-works price of glycine has come down a lot in China compared with that in H1 2022, mainly because of weak demand from downstream industry.

Quite different from the overseas consumption structure, the largest end-use segment of glycine in China is glyphosate. The output of glycine route glyphosate reached 450,000 tonnes in 2022, consuming about 262,000 tonnes of glycine in total, which means around 75% of tech-grade glycine was applied in the domestic glyphosate industry.

The consumption of food-, feed- and pharmaceutical-grade glycine all increased from 2018 to 2022, with their CAGR in this period at 4.2%, 2.7% and 3.2% respectively.

Methodology

- Research objectives

Objectives of this research are to present an in-depth and comprehensive view of China's glycine market, to determine current status of the glycine industry in China and to assess its growth potential from 2023 to 2028.

Having accumulated profound understanding on industrial chains of glyphosate, the most important downstream industry of glycine, CCM will present an insight into glycine market and future trends, together with its industry structure, including upstream products, applications. A review of glycine's competitiveness is also provided in the report.

- Scope of report

All of the four grades of glycine, including tech-grade, food-grade, pharmaceutical-grade and feed-grade, will be investigated in this research.

This report will present industry insights from the following aspects:

- Supply (capacity, output)
- Key players (active producers, potential producers)
- Technology
- Raw materials
- Demand by volume
- Trade
- Price

- Methodology

Telephone Interviews

The interviewees include:

- Producers
- Traders
- Researchers
- Raw material suppliers
- End users

Data processing and presentation

The data collected and compiled were sourced from:

- Published articles from Chinese periodicals, magazines, journals, and third-party databases
- Government statistics & Customs statistics
- Telephone interviews with Chinese producers, traders, end users, etc.
- Comments from industrial experts
- CCM's database
- Professional database from other sources
- Information from the Internet

The data from various channels have been combined to make this report as precise and scientific as possible. Throughout the process, a series of internal discussions were held in order to analyse the data and draw conclusions from it.

Information sources

Sources of desk research are various, including published magazines, journals, government statistics, industry statistics, customs statistics, association seminars as well as information on the internet. A lot of work has been done to compile and analyse the information obtained. When necessary, checks were made with Chinese market players regarding market information such as production, demand, consumption, competition.

Glossary

Abbreviations in this report are listed as follows: AEA: aminoethanoic acid DEA: Diethanolamine IDAN: Iminodiacetonitrile HCN: Hydrogen cyanide CAGR: Compound annual growth rate GM: Genetically modified HHI: Herfindahl-Hirschman Index

Unit

tonne: equals to metric ton in this report /t: per tonne t/a: tonne per annum, tonne per year USD: currency unit in the US RMB: currency unit in China, also named Yuan

Year	Jan.	Feb.	March	April	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
2014	6.1043	6.1128	6.1358	6.1553	6.1636	6.1557	6.1569	6.1606	6.1528	6.1441	6.1432	6.1238	6.1428
2015	6.1272	6.1339	6.1507	6.1302	6.1143	6.1161	6.1167	6.3056	6.3691	6.3486	6.3666	6.4476	6.2288
2016	6.5527	6.5311	6.5064	6.4762	6.5315	6.5874	6.6774	6.6474	6.6715	6.7442	6.8375	6.9182	6.6425
2017	6.8918	6.8713	6.8932	6.8845	6.8827	6.8019	6.7772	6.7148	6.5909	6.6493	6.6300	6.6067	6.7662
2018	6.5079	6.3045	6.3352	6.2764	6.3670	6.4078	6.6157	6.8293	6.8347	6.8957	6.9670	6.9431	6.6070
2019	6.8482	6.7081	6.6957	6.7193	6.7344	6.8896	6.8716	6.8938	7.0883	7.0726	7.0437	7.0262	6.8826
2020	6.9614	6.9249	6.9811	7.0771	7.0690	7.1315	7.0710	6.9980	6.8498	6.7796	6.7050	6.5921	6.9284
2021	6.5408	6.4623	6.4754	6.5584	6.4895	6.3572	6.4709	6.4660	6.4680	6.4604	6.4192	6.3693	6.4615
2022	6.3794	6.3580	6.3014	6.3509	6.5672	6.6651	6.6863	6.7467	6.8821	7.0992	7.2081	7.1225	6.6972
2023	6.9475	6.7492	6.9400	6.8805	6.9054	7.0965	7.2157	7.1283	7.1788	7.1789	7.1778	7.1104	7.0424

Table 1 USD/CNY exchange rate, Jan. 2014–Dec. 2023

Source: The People's Bank of China

1 Overview of glycine in China

1.1 Introduction of glycine in China

China is one of the major glycine-production countries in the world. The majority of glycine produced in China is of tech grade.

China's glycine industry started in 1969. At that time, Hebei Normal University took the initiative to set up the first glycine facility adopting the chloroacetic acid ammonolysis process in China. Later, it transferred the technology to Zhengding Joint Chemical Factory for free, the former of Hebei Donghua Chemical Group (Hebei Donghua). Commercial production of glycine by the chloroacetic acid ammonolysis process had not started until the late 1970s, when this chloroacetic acid ammonolysis process was accessible and the requirement for facilities was relatively low.

Domestic capacity and output of glycine kept increasing during 2014–2022 along with the steady development of glyphosate (glycine's key end-use segment) in China. There is an overall upward trend in the output of tech-, food- and feed-grade glycine.

	Capacit	y, t/a	Output,	tonne	F	Apparent consumption, tonne			
Year	Tech-grade	Others	Export, tonne	Tech-grade	Export, tonne	Tech-grade	Others		
2014	347,000	63,300	241,000	30,100	25,896	241,000	4,204		
2015	399,000	82,300	254,000	34,600	30,106	253,000	4,494		
2016	479,000	83,800	303,500	47,600	42,887	308,500	4,713		
2017	511,000	119,800	307,000	52,900	48,020	304,000	4,880		
2018	561,000	129,800	325,000	56,600	55,270	320,312	5,018		
2019	561,000	133,800	338,000	56,400	56,153	332,102	5,145		
2020	581,000	133,800	340,000	60,200	60,231	334,588	5,381		
2021	603,000	133,800	352,500	61,300	61,342	346,894	5,564		
2022	603,000	134,100	347,500	61,000	60,733	342,000	5,766		

Table 1.1-1 Supply and demand of glycine in China, 2014–2022

Note:1. The year-end inventory of tech-grade glycine is taken into account, while that of others is not. 2. Others include feed-grade, food-grade and pharmaceutical-grade glycine.

Source: China Customs & CCM

Table 1.1-2 Supply and demand of glycine (tech-grade excluded) in China, 2014–2022

		Output,	tonne		Export,	tonne	Apparent consumption, tonne			
Year	Food grade	Feed grade	Pharmaceutical grade	Food grade	Feed grade	Pharmaceutical grade	Food grade	Feed grade	Pharmaceutical grade	
2014	25,550	1,700	2,850	23,533	583	1,780	2,017	1,117	1,070	
2015	27,110	5,450	2,040	24,987	4,200	919	2,123	1,250	1,121	
2016	38,300	7,240	2,060	36,096	5,946	845	2,204	1,294	1,215	
2017	44,470	6,200	2,230	42,193	4,852	975	2,277	1,348	1,255	
2018	46,300	8,600	1,700	43,953	7,225	405	2,347	1,375	1,295	

		Output,	tonne		Export,	tonne	Apparent consumption, tonne			
Year	Food grade	Feed grade	Pharmaceutical grade	Food grade	Feed grade	Pharmaceutical grade	Food grade	Feed grade	Pharmaceutical grade	
2019	46,650	7,750	2,000	44,221	6,345	689	2,429	1,405	1,311	
2020	49,250	8,800	2,150	46,710	7,362	747	2,540	1,438	1,403	
2021	49,830	9,280	2,190	47,213	7,753	770	2,617	1,527	1,420	
2022	49,586	9,235	2,179	46,788	7,683	763	2,769	1,528	1,468	

Note:1. The year-end inventory is not taken into account.

Source: China Customs & CCM

1.2 Classification of glycine

Table 1.2-1 Comparison on properties of Chinese glycine and overseas glycine

Index		Chinese glyc	ine		Overseas glycin	e
Index	Pharmaceutical- grade	Food- grade	Feed- grade	Tech- grade	Food- & pharmaceutical- grade	USP-24, BP- 98
Appearance	White crystalline po	owder			White crystalline powder	
Purity (C2H5NO2), %	99.5–101.5	98.5–101.5	98.5–101.5	≤98.5	99.5–101.5	98.5–101.5
Chlorine (Cl-), %	≤0.007	≤0.021	≤0.50	≤0.70	≤0.006	≤0.007
Heavy metal, %	≤0.002	≤0.002	≤0.002	/	≤0.001	≤0.002
Lead (Pb), %	1	/	≤0.0005	/	≤0.0005	1
Sulfate (SO4+), %	≤0.006	≤0.0065	/	/	≤0.006	≤0.0065
Arsenic (As), %	≤0.0002	≤0.0002	≤0.0003	/	≤0.0001	1
Ferric (Fe), %	1	/	/	≤0.003	≤0.001	1
Ammonia (NH4+), %	≤0.01	≤0.02	/	/	≤0.01	1
Loss on drying, %	≤0.2	≤0.2	≤0.2	≤0.3	≤0.07	≤0.2
Ash content, %	≤0.1	≤0.1	≤0.1	1	≤0.05	≤0.1
PH value	5.5–6.5	5.5–6.5	1	/	5.8–6.2	/

Source:CCM

In China, glycine is typically manufactured and sold in four grades: tech-grade (≤98.5%), food-grade (98.5%–101.5%), feed-grade (98.5%–101.5%) and pharmaceutical-grade (99.5%–101.5%). Chinese producers mainly produce tech-grade glycine for diverse uses. Quite different from the situation in most overseas countries, the output of and demand for tech-grade glycine account for over 85% and 95% of China's total respectively.

The content of glycine and chlorine is key parameter in glycine quality evaluation.

In international market, glycine is mainly made from hydrocyanic acid, a by-product of acrylonitrile production.

The glycine produced by adopting this method has good properties with high glycine content (about 99%), and low chloride content which is about 1/30 of that of homemade products.

In China, glycine is mainly produced through the chloroacetic acid ammonolysis process with relatively higher production costs and lower glycine content compared with that overseas. Glycine productivity by this process can reach 90% and there is no significant quality disparity among the homemade products.

Glycine with the content of 98.5% is the most common specification in China. As for higher glycine content, re-crystallization is needed, resulting in increased production costs. Because of this, domestic glyphosate producers prefer glycine with the content of 98.5% (tech-grade) without re-crystallization.

2 Market situation of glycine in China

2.1 Supply of glycine in China

2.1.1 Capacity and output of glycine in China

China's glycine tech-grade capacity grew rapidly from 347,000 t/a in 2014 to 561,000 t/a in 2018, at a CAGR of 12.8% in this period. But Chinese glycine industry has witnessed overcapacity for quite a while, and this situation will not change much in the coming few years.

In 2017, national capacity of glycine (tech-grade) reached 511,000 t/a during which Hebei Chuncheng Biological Technology Co., Ltd. finished a 10,000 t/a tech-grade glycine project and Hebei Huaheng Biological Technology Co., Ltd. completed a 22,000 t/a tech-grade glycine project.

The capacity of tech-grade glycine came to 561,000 t/a in 2018. The 30,000 t/a tech-grade glycine and 10,000 t/a food-grade glycine of Hainan Zhengye Fine Chemical Co., Ltd. was put into production in 2018. Xizang Newtrend Fine Chemical Co., Ltd. built up 40,000 t/a tech-grade glycine production lines. And Hebei Donghua's capacity expanded to 192,000 t/a. The national capacity was maintained at the same level in 2019, as Yuanshi Xinhongsheng Pharmaceutical Technology Co., Ltd. built a 10,000 t/a glycine project (8,000 t/a tech-grade), while Shijiazhuang Zexing's 10,000 t/a glycine lines (8,000 t/a tech-grade) stopped production this year.

In 2020, the capacity of tech-grade glycine reached 581,000 t/a, as Linyi Hongtai Chemical Co., Ltd. expanded its glycine capacity by 20,000 t/a.

In 2021, China's total capacity of glycine (tech-grade) reached 603,000 t/a. Cangzhou Huachen Biological Technology Co., Ltd. (a subsidiary of Hebei Huayang Biological Technology Co., Ltd.) completed a 30,000 t/a tech-grade glycine project, and put it into production in November. The total capacity of glycine (tech-grade) in China remained at this level in 2022.

In 2023, the capacity of glycine (tech-grade) reached 613,000 t/a in China, as Kaifeng Longxing Chemical Co., Ltd. completed a 10,000 t/a tech-grade glycine project in September.

	Capacity	y, t/a		0	utput, tonne	
Year	Tech-grade	Others	Tech-grade	Food-grade	Feed-grade	Pharmaceutical-grade
2014	347,000	63,300	241,000	25,550	1,700	2,850
2015	399,000	82,300	254,000	27,110	5,450	2,040
2016	479,000	83,800	303,500	38,300	7,240	2,060
2017	511,000	119,800	307,000	44,470	6,200	2,230
2018	561,000	129,800	325,000	46,300	8,600	1,700
2019	561,000	133,800	338,000	46,650	7,750	2,000
2020	581,000	133,800	340,000	49,250	8,800	2,150
2021	603,000	133,800	352,500	49,830	9,280	2,190
2022	603,000	134,100	347,500	49,586	9,235	2,179
2023	613,000	134,100	338,500	49,749	9,265	2,186

Table 2.1.1-1 Capacity and output of glycine in China, 2014–2023

Note:"Others" includes food-grade, feed-grade and pharmaceutical-grade glycine. Source:CCM

2.1.2 Key glycine producers in China

- Production of various grades of glycine by producer in China

In China, there were 23 active producers of glycine as of Dec. 2023, 10 of which are located in Hebei Province. Among the 23 active producers, 9 companies engage in tech-grade glycine production only, 7 produce both tech-grade glycine and glycine of other grades, and the rest purchase tech-grade glycine for the production of other grades.

Hebei Donghua produces glycine products of all grades. From Jan. 2013 to Dec. 2023, the company was the top glycine producer in China by market share, accounting for about one-third of the national total capacity (tech-grade).

Nine active producers who only produce tech-grade glycine in China are listed as follows. In 2023, the capacity of these nine producers totaled 325,000 t/a, which accounted for 53.0% of the national capacity of tech-grade glycine in China.

- Hubei Trisun Chemical Co., Ltd.
- Linyi Hongtai Chemical Co., Ltd.
- Fuhua Tongda Chemical Co., Ltd.
- Henan HDF Chemical Co., Ltd.
- Inner Mongolia Xingfa Technology Co., Ltd.
- Xizang Newtrend Fine Chemical Co., Ltd.
- Cangzhou Huachen Biological Technology Co., Ltd.
- Shandong Zhenxing Chemical Industry Co., Ltd.
- Kaifeng Longxing Chemical Co., Ltd.

Table 2.1.2-1 Production for various grades of glycine in China by producers, 2023

No			Status,		Prod	uction situa	ation
No.	Producer	Abbreviation	2023	Tech grade	Food grade	Feed grade	Pharmaceutical grade
1	Hebei Donghua Chemical Group	Hebei Donghua	Active	\checkmark	\checkmark	\checkmark	\checkmark
2	Hubei Trisun Chemical Co., Ltd.	Hubei Trisun	Active	V	×	×	×
3	Linyi Hongtai Chemical Co., Ltd.	Linyi Hongtai	Active	V	×	×	×
4	Fuhua Tongda Chemical Co., Ltd.	Fuhua Tongda	Active	V	×	×	x
5	Xizang Newtrend Fine Chemical Co., Ltd.	Xizang Newtrend	Active	1	×	×	x
6	Hainan Zhengye Fine Chemical Co., Ltd.	Hainan Zhengye	Active	1	V	×	x
7	Hebei Huaheng Biological Technology Co., Ltd.	Hebei Huaheng	Active	\checkmark	\checkmark	~	\checkmark
8	Guang'an Chengxin Chemical Co., Ltd.	Guang'an Chengxin	Active	\checkmark	\checkmark	×	x
9	Henan HDF Chemical Co., Ltd.	Henan HDF	Active	V	×	×	×
10	Inner Mongolia Xingfa Technology Co., Ltd.	Inner Mongolia Xingfa	Active	1	×	×	x
11	Shandong Zhenxing Chemical Industry Co., Ltd.	Shandong Zhenxing	Active	1	×	×	x
12	Hebei Huayang Biological Technology Co., Ltd.	Hebei Huayang	Active	√	1	√	\checkmark

			Statua		Prod	uction situa	ation
No.	Producer	Abbreviation	Status, 2023	Tech grade	Food grade	Feed grade	Pharmaceutical grade
13	Cangzhou Huachen Biological Technology Co., Ltd.	Cangzhou Huachen	Active	√	×	×	×
14	Hebei Chuncheng Biological Technology Co., Ltd.	Hebei Chuncheng	Active	√	\checkmark	×	×
15	Yuanshi Xinhongsheng Pharmaceutical Technology Co., Ltd.	Yuanshi Xinhongsheng	Active	\checkmark	V	√	\checkmark
16	Kaifeng Longxing Chemical Co., Ltd.	Kaifeng Longxing	Active	√	×	×	×
17	Hebei Granray Bioproducts Co., Ltd.	Hebei Granray	Active	×	\checkmark	~	\checkmark
18	Jiangxi Ansun Food Ingredients Co., Ltd.	Jiangxi Ansun	Active	×	\checkmark	×	×
19	Shijiazhuang Shixing Amino Acid Co., Ltd.	Shijiazhuang Shixing	Active	×	1	~	\checkmark
20	Nantong Guangrong Chemical Co., Ltd.	Nantong Guangrong	Active	×	1	~	\checkmark
21	Suzhou Yotech Fine Chemical Co., Ltd.	Suzhou Yotech	ldle	×	\checkmark	~	\checkmark
22	Hubei Bafeng Pharmaceuticals & Chemicals Co., Ltd.	Hubei Bafeng	Active	×	×	×	\checkmark
23	Hebei Changhao Biotechnology Co., Ltd.	Hebei Changhao	Active	×	\checkmark	~	\checkmark
24	Shijiazhuang Jirong Pharmaceutical Co., Ltd.	Shijiazhuang Jirong	Active	×	\checkmark	1	\checkmark
25	Shijiazhuang Zexing Amino Acids Co., Ltd.	Shijiazhuang Zexing	Stopped	×	×	×	×

Note: \/: produce, X: not produce Source: CCM

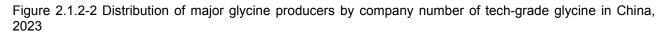
Table 2.1.2-2 Capacity of glycine by producers in China, 2019–2023, t/a

		2023		20	22	20	21	20	20	2019	
No.	Producer	Tech grade	Others								
1	Hebei Donghua	192,000	35,000	192,000	35,000	192,000	35,000	192,000	35,000	192,000	35,000
2	Hubei Trisun	100,000	0	100,000	0	100,000	0	100,000	0	100,000	0
3	Linyi Hongtai	70,000	0	70,000	0	70,000	0	70,000	0	50,000	0
4	Fuhua Tongda	40,000	0	40,000	0	40,000	0	40,000	0	40,000	0
5	Xizang Newtrend	40,000	0	40,000	0	40,000	0	40,000	0	40,000	0

	Producor	202	3	20	2022		21	20	20	20	19
No.	Producer	Tech grade	Others								
6	Hainan Zhengye	30,000	10,000	30,000	10,000	30,000	10,000	30,000	10,000	30,000	10,000
7	Hebei Huaheng	22,000	30,000	22,000	30,000	22,000	30,000	22,000	30,000	22,000	30,000
8	Guang'an Chengxin	20,000	8,000	20,000	8,000	20,000	8,000	20,000	8,000	20,000	8,000
9	Henan HDF	15,000	0	15,000	0	15,000	0	15,000	0	15,000	0
10	Inner Mongolia Xingfa	10,000	0	10,000	0	10,000	0	10,000	0	10,000	0
11	Shandong Zhenxing	10,000	0	10,000	0	10,000	0	10,000	0	10,000	0
12	Hebei Huayang	6,000	11,000	6,000	11,000	6,000	11,000	6,000	11,000	6,000	11,000
13	Cangzhou Huachen	30,000	0	30,000	0	30,000	0	0	0	0	0
14	Hebei Chuncheng	10,000	3,000	10,000	3,000	10,000	3,000	10,000	3,000	10,000	3,000
15	Yuanshi Xinhongsheng	8,000	2,000	8,000	2,000	8,000	2,000	8,000	2,000	8,000	2,000
16	Kaifeng Longxing	10,000	0	0	0	0	0	0	0	0	0
17	Hebei Granray	0	5,000	0	5,000	0	5,000	0	5,000	0	5,000
18	Jiangxi Ansun	0	20,000	0	20,000	0	20,000	0	20,000	0	20,000
19	Shijiazhuang Shixing	0	2,800	0	2,800	0	2,500	0	2,500	0	2,500
20	Nantong Guangrong	0	3,000	0	3,000	0	3,000	0	3,000	0	3,000
21	Suzhou Yotech	0	1,000	0	1,000	0	1,000	0	1,000	0	1,000
22	Hubei Bafeng	0	700	0	700	0	700	0	700	0	700
23	Hebei Changhao	0	2,000	0	2,000	0	2,000	0	2,000	0	2,000
24	Shijiazhuang Jirong	0	400	0	400	0	400	0	400	0	400
	Others	0	200	0	200	0	200	8,000	200	8,000	200
	Total	613,000	134,100	603,000	134,100	603,000	133,800	581,000	133,800	561,000	133,800

Note:"Others" includes food-grade, feed-grade and pharmaceutical-grade glycine. Source:CCM

- Distribution and market share of glycine producers in China


Generally speaking, Chinese glycine producers are mainly located in places where raw materials such as chlor-alkali, chloroacetic acid and natural gas are adequate, mainly resulting from governmental restriction on transportation of highly toxic chemicals including chlor-alkali, chloroacetic acid and HCN.

In particular, most glycine production in China is concentrated in chlor-alkali-rich Hebei Province, where the capacity of tech-grade glycine was 268,000 t/a in 2023, taking up to 43.7% of the national capacity (tech grade). Guang'an Chengxin, the only producer producing glycine via the Hydantion process, is located in Sichuan Province.

Figure 2.1.2-1 Distribution of major glycine producers by capacity of tech-grade glycine in China, 2023

Source:CCM

Hainan

Source:CCM

Item	2023	2022	2021	2020	2019
Top one concentration ratio	38.7%	37.4%	36.9%	38.2%	38.5%
Top three concentration ratio	69.7%	71.1%	71.8%	72.1%	71.6%
Top five concentration ratio	82.9%	83.7%	84.0%	84.4%	84.0%
нні	2,177	2,173	2,160	2,236	2,280

Source:CCM

China's glycine industry is highly concentrated. The high concentration is mainly embodied in large-scale production, which is beneficial for top players to reduce cost and control market price.

Actually, pioneering the glycine industry, Hebei Donghua has always played a predominant role in pricing. The company always takes the lead in setting price, which is usually followed by other domestic producers. Indeed, evidence from CCM's studies suggests that domestic glycine producers have gained more profits by making the most use of high production concentration and taking advantage of pricing power.

However, the concentration has kept declining in the past few years, and the HHI will decline in the coming few years because some producers are possible to equip themselves with new facilities that can produce

more than ten-thousand tonnes of glycine each year. These companies include Tianjin Tiancheng, Hubei Minteng, Henan HDF and Shaanxi Beiyuan.

In the next five years, Hebei Donghua will still remain competitive but its competitiveness will decline.

Some glyphosate producers have established or will establish glycine facilities for their glyphosate production.

- Glyphosate producer Henan HDF has established 15,000 t/a glycine installation.

- Glyphosate producer Fuhua Tongda has established 40,000 t/a glycine installation.

- Glyphosate producers Hubei Trisun and Inner Mongolia Xingfa have established glycine plants, with the glycine capacity of 100,000 t/a and 10,000 t/a respectively, and the latter also has a 60,000 t/a expansion plan.

- Glyphosate producer Guang'an Chengxin had established 28,000 t/a glycine installation, and planned to increase the capacity by 30,000 t/a (10,000 t/a food-grade glycine and 20,000 t/a tech-grade glycine). As of Feb. 2024, its glycine expansion project has been completed and entered trial production.

- Output of glycine by producer in China

		202	23	202	22	202	21	202	20	20 ⁻	19
No.	Producer	Tech- grade	Others	Tech- grade	Others	Tech- grade	Others	Tech- grade	Others	Tech- grade	Others
1	Hebei Donghua	130,000	20,000	130,000	20,000	130,000	20,000	130,000	20,000	130,000	20,000
2	Hubei Trisun	75,000	0	82,000	0	88,000	0	80,000	0	84,000	0
3	Linyi Hongtai	32,000	0	35,000	0	35,000	0	35,000	0	28,000	0
4	Fuhua Tongda	26,000	0	26,000	0	26,000	0	25,000	0	25,000	0
5	Xizang Newtrend	6,000	0	6,000	0	6,000	0	6,000	0	6,000	0
6	Hainan Zhengye	10,000	800	10,000	800	10,000	800	10,000	800	8,000	300
7	Hebei Huaheng	5,000	7,200	5,000	7,000	5,000	7,500	5,000	7,300	5,000	6,200
8	Guang'an Chengxin	18,000	2,500	18,000	2,500	17,000	2,500	17,000	2,500	17,000	2,500
9	Henan HDF	5,000	0	5,000	0	11,000	0	10,000	0	11,000	0
10	Inner Mongolia Xingfa	10,000	0	10,000	0	10,000	0	10,000	0	10,000	0
11	Shandong Zhenxing	1,000	0	1,000	0	500	0	1,000	0	1,000	0
12	Hebei Huayang	3,000	10,000	3,000	10,000	3,000	10,000	3,000	11,000	5,000	10,000
13	Cangzhou Huachen	8,000	0	8,000	0	3,000	0	/	1	/	1
14	Hebei Chuncheng	3,500	2,000	3,500	2,000	3,500	2,000	5,000	1,500	5,000	1,000
15	Yuanshi Xinhongsheng	5,000	1,000	5,000	1,000	4,500	1,000	3,000	1,000	3,000	1,000
16	Kaifeng Longxing	1,000	0	1	1	1	1	1	1	1	1

Table 2.1.2-4 Output of glycine in China by producer, 2019–2023, tonne

		202	23	202	22	202	21	202	20	201	19
No.	Producer	Tech- grade	Others								
17	Hebei Granray	0	2,500	0	2,500	0	2,500	0	2,500	0	2,600
18	Jiangxi Ansun	0	12,000	0	12,000	0	12,000	0	10,000	0	9,200
19	Shijiazhuang Shixing	0	1,200	0	1,200	0	1,000	0	1,200	0	1,200
20	Nantong Guangrong	0	1,000	0	1,000	0	1,000	0	1,000	0	1,000
21	Suzhou Yotech	0	0	0	0	0	0	0	200	0	200
22	Hubei Bafeng	0	100	0	100	0	100	0	100	0	100
23	Hebei Changhao	0	800	0	800	0	800	0	1,000	0	1,000
24	Shijiazhuang Jirong	0	100	0	100	0	100	0	100	0	100
	Others	0	0	0	0	0	0	0	0	0	0
	Total	338,500	61,200	347,500	61,000	352,500	61,300	340,000	60,200	338,000	56,400

Note:"Others" includes food-grade, feed-grade and pharmaceutical-grade glycine. Source:CCM

- Capacity utilization of glycine by producer in China

Table 2.1.2-5 Capacity utilization of glycine producer in China, 2019–2023

		202	23	202	22	202	21	202	20	201	19
No.	Producer	Tech- grade	Others								
1	Hebei Donghua	67.7%	57.1%	67.7%	57.1%	67.7%	57.1%	67.7%	57.1%	67.7%	57.1%
2	Hubei Trisun	75.0%	/	82.0%	/	88.0%	/	80.0%	/	84.0%	/
3	Linyi Hongtai	45.7%	/	50.0%	/	50.0%	/	50.0%	/	56.0%	/
4	Fuhua Tongda	65.0%	/	65.0%	/	65.0%	/	62.5%	/	62.5%	/
5	Xizang Newtrend	15.0%	/	15.0%	/	15.0%	/	15.0%	/	15.0%	/
6	Hainan Zhengye	33.3%	8.0%	33.3%	8.0%	33.3%	8.0%	33.3%	8.0%	26.7%	3.0%
7	Hebei Huaheng	22.7%	24.0%	22.7%	23.3%	22.7%	25.0%	22.7%	24.3%	22.7%	20.7%
8	Guang'an Chengxin	90.0%	31.3%	90.0%	31.3%	85.0%	31.3%	85.0%	31.3%	85.0%	31.3%
9	Henan HDF	33.3%	/	33.3%	/	73.3%	/	66.7%	/	73.3%	/
10	Inner Mongolia Xingfa	100.0%	1	100.0%	1	100.0%	1	100.0%	/	100.0%	/

		202	23	202	22	202	21	202	20	201	19
No.	Producer	Tech- grade	Others								
11	Shandong Zhenxing	10.0%	1	10.0%	1	5.0%	1	10.0%	1	10.0%	1
12	Hebei Huayang	50.0%	90.9%	50.0%	90.9%	50.0%	90.9%	50.0%	100.0%	83.3%	90.9%
13	Cangzhou Huachen	26.7%	1	26.7%	1	10.0%	1	1	1	1	1
14	Hebei Chuncheng	35.0%	66.7%	35.0%	66.7%	35.0%	66.7%	50.0%	50.0%	50.0%	33.3%
15	Yuanshi Xinhongsheng	62.5%	50.0%	62.5%	50.0%	56.3%	50.0%	37.5%	50.0%	37.5%	50.0%
16	Kaifeng Longxing	10.0%	/	1	1	1	/	1	/	1	1
17	Hebei Granray	1	50.0%	1	50.0%	1	50.0%	1	50.0%	1	52.0%
18	Jiangxi Ansun	1	60.0%	1	60.0%	1	60.0%	1	50.0%	1	46.0%
19	Shijiazhuang Shixing	1	42.9%	1	42.9%	1	40.0%	1	48.0%	/	48.0%
20	Nantong Guangrong	1	33.3%	1	33.3%	1	33.3%	1	33.3%	/	33.3%
21	Suzhou Yotech	1	0.0%	1	0.0%	1	0.0%	1	20.0%	1	20.0%
22	Hubei Bafeng	1	14.3%	1	14.3%	1	14.3%	1	14.3%	1	14.3%
23	Hebei Changhao	1	40.0%	1	40.0%	1	40.0%	1	50.0%	1	50.0%
24	Shijiazhuang Jirong	/	25.0%	1	25.0%	1	25.0%	1	25.0%	1	25.0%
	Others	1	0.0%	1	0.0%	1	0.0%	0.0%	0.0%	0.0%	0.0%

Note:"Others" includes food-grade, feed-grade and pharmaceutical-grade glycine. Source:CCM

2.1.3 Potential production lines of glycine in China

If potential production capacity goes into production, the capacity of tech-grade glycine in China will increase steadily in the coming five years, from 613,000 t/a in 2023 to over 808,400 t/a in 2028.

	Table 2.1.3-1	Potential	projects o	of glycine i	in China, as o	of Dec. 2023
F						

Classification	Company	Designed capacity, t/a	Planned commissioning time	Details
	Hebei Donghua Chemical Group	30,000 tech-grade*	N/A	2nd phase of Hebei Donghua Jiheng Chemical Co., Ltd.'s 60,000 t/a glycine project (1st phase had been put into commercial production in 2018).
Expansion	Xizang Newtrend Fine Chemical Co., Ltd.	2nd phase: 90,000 glycine*	N/A	2nd phase 90,000 t/a glycine will be determined by the future market situation. (1st phase including 40,000 t/a tech-grade glycine and 6,000 t/a chloroacetic acid was built up in 2018.)

Classification	Company	Designed capacity, t/a	Planned commissioning time	Details
	Hebei Chuncheng Biological Technology Co., Ltd.	2nd phase: 14,000 tech-grade, 3,000 food-grade*	N/A	2nd phase: 17,000 t/a glycine and 45,000 t/a chloroacetic acid
	Henan HDF Chemical	1st phase: 20,000	N/A	1st phase: 20,000 t/a tech-grade glycine
	Co., Ltd.	tech-grade*	N/A	2nd phase: 20,000 t/a tech-grade glycine
	Guang'an Chengxin Chemical Co., Ltd.	20,000 tech-grade, 10,000 food-grade	N/A	20,000 t/a tech-grade glycine, 10,000 t/a food-grade glycine and 2,600 t/a iminodiacetic acid (by-product), etc.
	Kaifeng Longxing	2nd phase: 10,000	N/A	1st phase: 10,000 t/a tech-grade glycine was built up in 2023.
	Chemical Co., Ltd.	tech-grade glycine		2nd phase: 10,000 t/a tech-grade glycine
	Inner Mongolia Xingfa Technology Co., Ltd.	60,000 tech-grade	2023	60,000 t/a tech-grade glycine and 90,000 t/a chloroacetic acid
	Inner Mongolia Jiaquan Chemical Technology	20.000 toob gradet		1st phase (100,000 t/a formaldehyde, 15,000 t/a paraformaldehyde and 6,000 t/a urotropine) was built up in 2015.
	Co., Ltd.	20,000 tech-grade*	N/A	2nd phase (100,000 t/a formaldehyde, 15,000 t/a paraformaldehyde, 20,000 t/a glycine, etc.)
	Shaanxi Beiyuan Chemical Industry Group Co., Ltd.	120,000 tech-grade	N/A	120,000 t/a glycine, 180,000 t/a chloroacetic acid
	Hubei Minteng New Material Technology Co., Ltd.	80,000 tech-grade	N/A	80,000 t/a tech-grade glycine, 300,000 t/a chloroacetic acid and 150,000 t/a epichlorohydrin
New				1st phase: 600,000 t/a sulfuric acid
construction	Cangzhou Xulong Chemical Co., Ltd.	2nd phase: 60,000 glycine*	N/A	2nd phase: 600,000 t/a sulfuric acid, 60,000 t/a glycine, 60,000 t/a liquid sodium methoxide, etc.
	Inner Mongolia	2nd phase: 10,000		1st phase: 15,000 t/a chloroacetic acid and 10,000 t/a methyl chloroacetate
	Zhongyuan Pharmaceutical Co., Ltd.	glycine	N/A	2nd phase: 10,000 t/a chloroacetic acid and 10,000 t/a glycine
	Shaanxi Runzhong Clean Energy Co., Ltd.	50,000 tech-grade	N/A	50,000 t/a tech-grade glycine and 50,000 t/a ethylenediamine
	Tianjin Tiancheng New Materials Co., Ltd.	20,000 tech-grade, 10,000 food-grade	2024	20,000 t/a tech-grade glycine and 10,000 t/a food-grade glycine
-	Pingdingshan Heshengyuan Environmental Protection New Materials Co., Ltd.	20,000 tech-grade	N/A	20,000 t/a tech-grade glycine

Note:Projects with * have not seen progress for a long time and may have been shelved. Source:CCM

2.2 Price of glycine in China

2.2.1 Price of glycine in China, Jan. 2015–Dec. 2023

Only the price of tech-grade glycine in China is analysed here, as glycine with the other three grades is made from tech-grade one, and their prices are mainly subject to that of tech-grade one.

In 2023, the ex-works price of glycine has come down a lot in China compared with that in H1 2022, mainly because of weak demand from the downstream industry.

• In Q1,despite a continuous uptrend due to lower output, glycine prices declined on a year-on-year basis.

• In April–May, the price resumed the previous downward path.

• From June to Aug., the price of glycine enjoyed a small rebound, supported by recovered market of its downstream product glyphosate technical.

• In Aug., Linyi Hongtai Chemical Co., Ltd. resumed production. However, the glyphosate technical market turned cold in late Aug., and downstream demand for glycine declined, negatively impacting glycine prices.

• In Sept., glycine producers faced with sales pressure, falling demand and increasing raw material costs—the price of raw materials such as urotropine and acetic acid went up. As a result, they had to hold up their quotations to maintain profits. Despite the decrease in downstream demand, ex-works prices of glycine increased during the month amid reduced production by glycine producers.

• In Oct.-Nov., glycine downstream demand was scarce and the price fell back again.

• By Dec., the ex-works price of the main raw materials acetic acid and ammonia had risen, supporting glycine prices from the cost side.

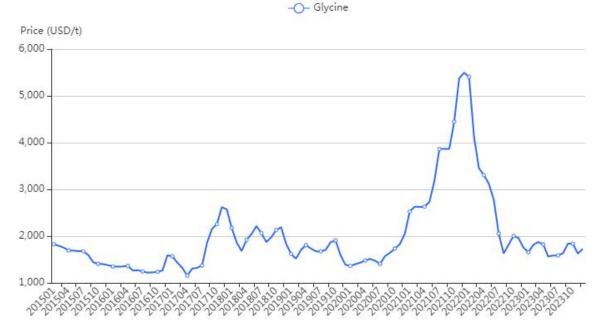


Figure 2.2.1-1 Monthly ex-works price of tech-grade glycine in China, Jan. 2015–Dec. 2023

Note:The ex-works price is based on 98% tech-grade glycine specification. Source:CCM

During 2021–2022

The price of glycine climbed quickly in Jan., June and July 2021, mainly inspired by the soaring price of glyphosate; the July price reached USD3,863/t. It jumped further up in Q4 2021, mainly due to limited glycine production under the COVID-19 situation and domestic power rationing policy, as well as mounting glyphosate export demand brought about by hurricane disasters-led reduced supply overseas. In addition, increases in the prices of raw materials such as urotropine and chloroacetic acid also pushed the price of glycine higher. At the end of 2021, the price of glycine hit a ten-year record at USD5,495/t.

However, the price fell rapidly in H1 2022, going down to USD2,776/t by June. As domestic manufacturers gradually resumed production since early this year, glycine supply recovered. On the demand side, since the operation in glyphosate plants abroad also saw a gradual recovery, the global supply of the product became more stable, leading to a decline in demand for glyphosate export from China. As a result, the demand for glycine diminished. In H2 2022, the overall downtrend continued.

During 2019–2020: In general, the ex-works price of tech-grade glycine declined in 2019. Affected by the COVID-19 pandemic, domestic and foreign demand for glycine decreased in H1 2020, and thus its price kept at a low level. Nevertheless, entering the peak season for glyphosate in H2 2020, demand for glyphosate exceeded its supply, which drove up the price of glycine. The price rebounded to USD2,048/t in Dec. 2020.

During 2015–2018: The price experienced a declining trend from 2015–2016, due to the following reasons:

• Demand for glycine from the downstream glyphosate industry declined, and the export volume of glyphosate declined in 2015 compared with that in 2014.

• With new capacity launched, the total capacity of glycine increased further and the supply gradually exceeded demand.

In 2017, ex-works price of tech-grade glycine was on an upward trend in general. The price bottomed at USD1,154/t in April 2017 but quickly rose to USD2,621/t in Nov. 2017 and USD2,573/t in Dec. 2017, due to the following reasons:

• The second-, third- and fourth-round environmental inspections were carried out in Nov. 2016, April 2017 and Aug. 2017, respectively. Besides, the supervision of production safety in 2017 had been strengthened. During the environmental inspections, production of glycine was restricted and operating rate of the industry was reduced, which led to a short supply of the product.

• After July 2016, China banned the sale and use of paraquat AS and part of its market was replaced by glyphosate. The increased demand for glyphosate led to an increase in the demand for glycine.

• Since H2 2016, with the rapid development of overseas glyphosate-resistant genetically modified crops, China's export of glyphosate increased, thus the demand for glycine increased.

In 2018, the price fluctuated between USD1,600/t–USD2,200/t, and the annual average was about USD2,000/t. The ups were mainly driven by increased price of glyphosate technical, rising demand for glycine, and stricter environmental protection requirements.

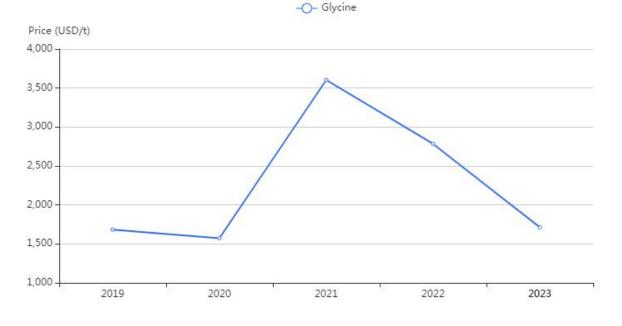


Figure 2.2.1-2 Annual ex-works price of tech-grade glycine in China, 2019–2023

Note:The ex-works price is based on 98% tech-grade glycine specification. Source:CCM

2.2.2 Factors influencing glycine price in China

Glycine price in China is influenced by the price of glyphosate technical, supply and demand, government policies, and the price of glycine's raw materials including chloroacetic acid, urotropine, liquid ammonia and methanol.

- Glyphosate technical price

Glycine price in China is largely susceptible to the price change of glyphosate technical, since 80% of techgrade glycine is applied in the domestic glyphosate industry.

- Government policies

Under the guidance of national industrial policies, China's amino acid industry has been developing rapidly. And due to some environmental policies, supply of and demand for glycine and enterprises' operating profits in China are limited, affecting the price of glycine.

From Aug. to Oct. in 2017, the fourth-round environmental inspection and the national production safety inspection were carried out in China, glycine production was under stricter supervision, leading to a tight supply of glycine.

And in Sept.–Oct. 2021, under the dual control policy on energy consumption and energy intensity, various provinces and cities rolled out power rationing measures, which led to large-scale suspension of glycine production, resulting in tight glycine supply and soaring prices.

In early 2023, northern China experienced severe air pollution sourced from sand and dust, with respirable suspended particulates PM10 as the main pollutant. Glycine production in Hebei Province was restricted to reduce pollutant emissions. Under this circumstance, operating rates in some major Chinese glycine producers were lowered, including Hebei Donghua Jiheng Chemical Co., Ltd., Shijiazhuang Donghua Jinlong Chemical Co., Ltd. and Yuanshi Xinhongsheng Pharmaceutical Technology Co., Ltd.; Linyi Hongtai Chemical Co., Ltd. even entered a temporary shutdown in mid-March. The decreased supply of glycine drove up its price.

- Supply and demand

In general, there is a great oversupply in the glycine industry in China, and in most cases, the glycine price does not change much. However, the price may increase when the supply cannot meet the demand at certain points.

In H1 2022, large demand and tight supply led to dramatic year-on-year increases in the price of glycine in China.

In Q1 2023, tight supply played a key role in driving up the glycine price in China, while increasing demand for glycine from downstream product glyphosate technical played an important role in driving up the glycine price from July to Aug. in 2023.

- Raw material price

The cost of raw materials, like urotropine and chloroacetic acid, accounts for over 80% of the total production cost of glycine.

From Sept. to Dec. 2023, the raw materials urotropine and acetic acid worked as key contributors to the rising price of glycine in China.

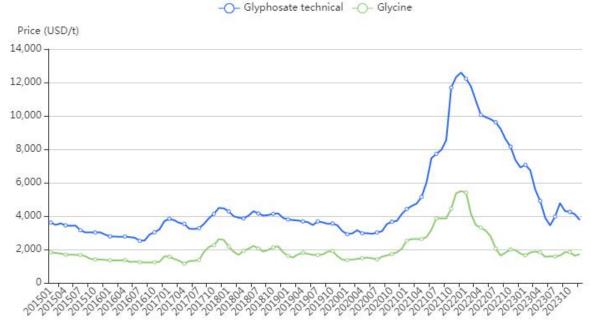


Figure 2.2.2-1 Monthly ex-works price of tech-grade glycine and glyphosate technical in China, Jan. 2015– Dec. 2023

Note: The ex-works price of glycine is based on 98% tech-grade glycine specification, while that of glyphosate technical is based on 95% glyphosate technical specification. Source: CCM

2.2.3 Price trend of glycine in China

The price change of glycine is mainly related to the market price trend of glyphosate, though there are some gaps.

As of Dec. 2023, the price of glyphosate technical had decreased by about 45.4% from Jan. 2023. The price of glyphosate reached a trough in June 2023, and began to rise in July and August. However, there was a lack of demand and the price began to decrease again from Sept. to Dec. 2023.

The price of glycine increased by nearly 7% from Jan. to Dec. in 2023. Since Jan., the glycine price gradually increased, and turned to decrease from April, with a significant decline in May. Since then, the price of glycine continued to rise until Sept., mainly due to the restrictions on production of glycine manufacturers and low market supply. There was a lack of downstream demand for glycine, and prices fell from Oct. to Nov. 2023.

In Dec. 2023, the price of glycine began to rise due to the increase in the ex-works prices of acetic acid and synthetic ammonia, the main raw materials of glycine. It is expected that in the future, if their production restrictions continue, the price of glycine will keep the uptrend, but the increase will be limited because more glycine production capacity will be released and the current sluggish downstream demand has not been improved yet.

It is expected that glyphosate TC will enter the peak procurement season in March, and there will be an increase in downstream new orders. With a small large domestic glycine inventory in the market, glycine prices may slightly increase in the short term. Meanwhile, Given the air pollution in northern China in March, factories may restrict the production of glycine, to reduce pollution emissions, which will affect the price of glycine.

It is estimated that the annual ex-works price of tech-grade glycine in China will range between USD2,200/t–USD3,000/t during 2024–2028.

2.3 Export of glycine in China, 2013–2019

- Export volume of glycine in China

China's total export volume of glycine increased on the whole in 2013–2019, rising from 25,019 tonnes in 2013 to 56,153 tonnes in 2019.

China started to export tech-grade glycine in 2018, with the export volume of 3,688 tonnes, accounting for 6.7% of total export volume of glycine in 2018. In 2019, the export volume of tech-grade glycine increased greatly to 4,898 tonnes which took up to 8.7% of the whole.

Food-grade glycine is the main glycine product exported in China, with its volume accounting for 87.9%, 79.5% and 78.8% of the total glycine export volume during 2017–2019 respectively. And it increased from 20,340 tonnes to 44,221 tonnes with a CAGR of 13.8% from 2013 to 2019.

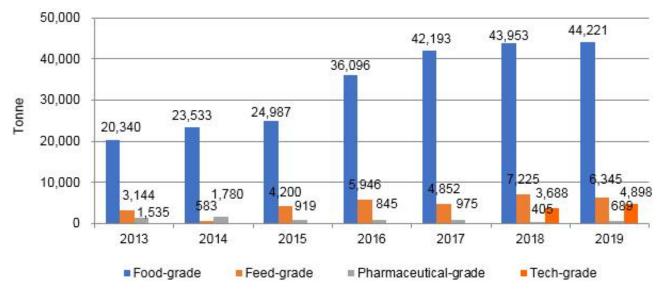
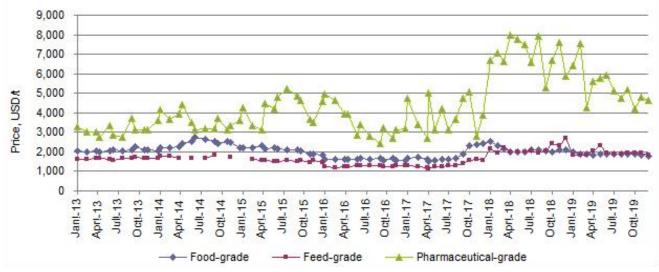


Figure 2.3-1 China's export volume of various grades glycine, 2013–2019

Source: China Customs & CCM

- Export price of glycine in China

The average export price of food-grade glycine in China hovered ranging from USD2,000/t to USD2,100/t in 2013, and experienced a fast rise in 2014 to a record high around USD2,400/t–USD2,700/t from April to Nov. because of tech-grade glycine's high price.


Since the end of 2014, the export price of food-grade glycine was on the decline continuously, reaching only about USD1,552/t in Dec. 2016. Since Jan. 2017, export price of food-grade glycine rebounded and climbed to USD2,518/t in Jan. 2018, due to the gradual rises in the prices of domestic glyphosate technical and tech-grade glycine. The export price of food-grade glycine kept declining since Feb. 2018 and in 2019, the price was pretty stable, though still on decline, ranging from USD1,800/t to USD2,000/t. The decrease was mainly influenced by the increasing export volume and sufficient supply.

During 2013–2019, the average export price of feed-grade glycine showed the same trend as that of food-grade glycine. In 2019, the export price of feed-grade glycine was stable and close to the price of food-grade glycine.

The average export price of pharmaceutical-grade glycine fluctuated greatly compared with food- and feedgrade glycine. In H2 2019, the fluctuation of pharmaceutical-grade glycine eased and the price ranged between USD4,000/t and USD5,000/t. The fluctuations mainly came from the following factors:

- The ex-works price of pharmaceutical-grade is much higher than that of other two grades, and it is not appreciably affected by the market price of tech-grade glycine compared with that of other two grades.

- The knockdown price mainly depends on the bargaining power of trade companies.

Figure 2.3-2 Export prices of various grades of glycine in China, Jan. 2013–Dec. 2019

Source: China Customs & CCM

- Export destination of glycine in China

In 2019, main export destinations of China's glycine include the Netherlands, Germany, India, Thailand, Russia, Japan and South Korea. The Netherlands surpassed Germany and became the largest export destination of China's glycine in 2019, the two countries accounting for 19.6% and 18.0% of China's total export volume of glycine respectively.

		Tech-g	rade	Food-g	rade	Feed-g	rade	Pharmaceutical-grade		
No.	Country/region	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	
1	The Netherlands	139	1,776	9,330	1,871	1,508	1,845	10	2,418	
2	Germany	592	1,665	8,466	1,907	1,015	1,689	22	2,145	
3	India	979	1,727	3,446	1,681	486	1,848	22	2,008	
4	Thailand	88	1,649	3,660	1,812	1,078	1,805	1	10,532	
5	Russia	171	2,030	2,956	1,909	660	1,969	347	4,425	
6	Japan	27	6,329	3,239	2,119	107	1,875	35	6,416	
7	South Korea	90	1,788	2,414	1,939	135	2,265	13	7,953	
8	Vietnam	34	1,712	1,573	1,690	447	2,354	21	1,937	
9	Spain	654	1,597	1,131	1,625	97	1,751	0	0	
10	Belgium	305	4,899	1,140	1,790	20	1,909	133	7,717	
11	Australia	376	1,613	645	1,950	61	1,771	7	8,303	
12	The US	877	1,923	<1	2,502	15	2,044	0	0	

Table 2.3-1 China's exports of glycine by destinations, 2019

		Tech-g	rade	Food-g	rade	Feed-g	rade	Pharmaceut	ical-grade
No.	Country/region	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t
13	Poland	186	1,668	621	1,823	0	0	0	0
14	Indonesia	10	1,630	730	1,932	60	2,102	<1	13,737
15	The UK	16	2,374	569	1,980	148	2,084	2	3,835
16	Italy	0	0	541	1,865	108	1,629	<1	6,667
17	Brazil	33	2,181	369	1,846	78	2,009	23	2,462
18	France	0	0	492	1,749	9	7,551	<1	12,356
19	Taiwan Province	171	1,527	672	1,887	59	1,767	1	6,871
20	South Africa	32	1,939	243	1,821	2	2,340	7	2,125
21	Mexico	34	1,892	222	1,927	2	2,300	8	2,754
22	Switzerland	0	0	220	1,767	40	1,730	0	0
23	Sweden	0	0	131	2,195	76	1,998	0	0
24	Egypt	<1	4,844	176	1,933	5	1,901	9	3,875
25	Ireland	0	0	160	1,750	0	0	0	0
26	Malaysia	0	0	146	1,930	0	0	1	24,590
27	Argentina	4	2,195	58	2,140	68	2,077	3	3,087
28	Turkey	<1	4,760	117	1,838	6	2,467	4	6,800
29	Nigeria	0	0	115	2,048	2	2,069	0	0
30	Canada	39	2,085	67	2,195	2	2,107	0	0
	Others	41	1,994	572	1,915	51	2,192	20	12,236
	Total	4,898	1,967	44,221	1,871	6,345	1,891	689	5,182

Note:The data has been rounded. Source:China Customs & CCM

- Exporter of glycine in China

Glycine producers play a dominant role in glycine export in China, and the export by glycine producers and their related companies took up over 82% in terms of volume during 2017–2019.

Na	Eventer	Tech-g	rade	Food-g	rade	Feed-g	rade	Pharmaceutical- grade		
No.	Exporter	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	
1	Hebei Huayang Biological Technology Co., Ltd.*	269	1,568	9,133	1,793	349	1,697	0	3,100	
2	Jiangxi Ansun Chemical Technology Co., Ltd. *	0	/	5,321	1,877	1,077	1,884	0	1	
3	Hebei Pushi Yongdao Trade Co., Ltd.*	109	1,652	5,267	1,900	340	1,826	0	1	
4	Hebei Donghua Jiheng Amino Acid Technology Co., Ltd. *	1,171	1,581	3,701	1,835	0	1	0	1	
5	Hebei Huaheng Biological Technology Co., Ltd. *	131	1,737	4,161	1,827	20	1,355	0	1	
6	Nanchang Newtrend Technology Co., Ltd.*	0	1	2,972	2,034	802	2,119	0	1	
7	Shijiazhuang Donghuajian Amino Acids Co., Ltd. *	36	1,614	2,740	1,979	333	1,656	0	1	
8	Guang'an Chengyang Bio- tech Co., Ltd. *	0	1	2,614	1,712	0	1	0	1	
9	Hebei Granray Bioproducts Co., Ltd. *	92	1,629	401	1,815	1,163	1,684	0	1	
10	Shijiazhuang Chiyuan Food Technology Co., Ltd. *	0	1	1,653	2,082	0	1	0	5,882	
11	Hebei Harmony Amino Acid Co., Ltd. *	113	1,547	903	1,545	0	1	0	1	
12	Shijiazhuang Haitian Amino Acid Co., Ltd. *	502	1,805	347	1,758	88	1,754	0	1	
13	Chengdu Shanfeng International Trade Co., Ltd.	830	1,924	0	/	0	1	0	1	
14	Xiamen Yuanbaolong Import & Export Co., Ltd.	0	1	653	2,004	0	1	0	1	
15	Shanxi Chengxin Chemical Co., Ltd.	0	/	560	1,747	0	1	0	1	
16	Hebei Chuncheng Biological Technology Co., Ltd. *	0	/	153	1,870	383	1,750	0	1	
17	Hengshui Yangli Commerce Co., Ltd.	60	1,920	463	1,870	10	1,889	0	1	
18	Hebei Changhao Biotechnology Co., Ltd. *	0	/	515	1,803	0	1	0	1	

Table 2.3-2 China's exports of glycine by exporter, 2019

N -	Exporter	Tech-grade		Food-grade		Feed-g	rade	Pharmaceutical- grade	
No.		Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t	Volume, tonne	Price, USD/t
19	Jilin Shengrong Chemicals Import & Export Co., Ltd.	210	1,628	99	1,787	191	1,717	0	1
20	Shanghai Yunyuan Trade Co., Ltd.	0	1	0	1	454	1,642	0	1
Others		1,376	2,493	2,566	2,079	1,136	2,294	689	5,183
	Total	4,898	1,967	44,221	1,871	6,345	1,891	689	5,182

Note:1.* Glycine producers or their related companies 2. The data has been rounded. 3. Zhaocounty Granray Bioproducts Co., Ltd. has changed its name to Hebei Granray Bioproducts Co., Ltd.; Jiangxi Ansun Chemical Technology Co., Ltd. has changed its name to Jiangxi Ansun Food Ingredients Co., Ltd. Source:China Customs & CCM

2.4 Demand for glycine in China

2.4.1 Consumption of glycine in China

Major end-use segments of glycine are glyphosate, food, feed and pharmaceuticals in China.

The consumption of tech-grade glycine in China increased from 320,312 tonnes in 2018 to 342,000 tonnes in 2022; it kept increasing all these years except 2022. In 2022, 74.6% of tech-grade glycine was applied in the domestic glyphosate industry.

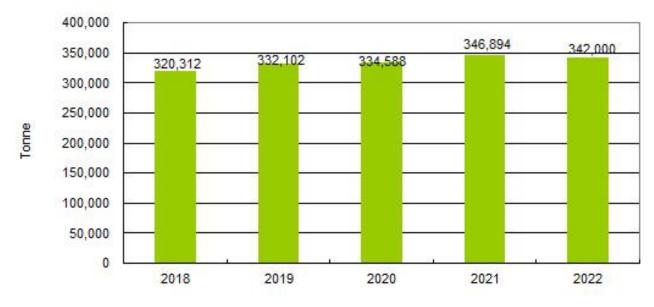
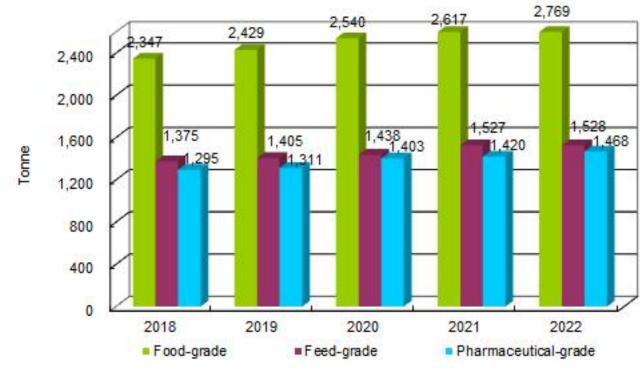
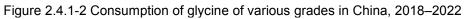
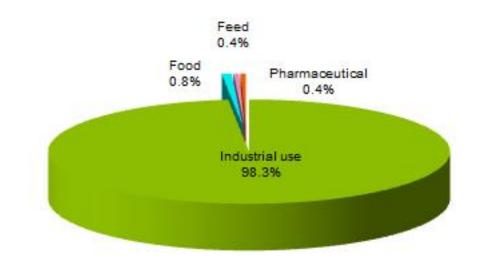




Figure 2.4.1-1 Consumption of tech-grade glycine in China, 2018–2022

Source:CCM

Consumption of food-, feed- and pharmaceutical-grade glycine increased constantly from 2018 to 2022. The consumption of food-grade glycine has increased from 2,347 tonnes in 2018 to 2,769 tonnes in 2022, with a CAGR of 4.2%. Feed-grade glycine consumption increased from 1,375 tonnes in 2018 to 1,528 tonnes in 2022, with a CAGR of 2.7%. Pharmaceutical-grade glycine has always been the smallest end use segment; from 2018 to 2022, its consumption increased from 1,295 tonnes to 1,468 tonnes, with a CAGR of 3.2%.



Source:CCM

On the whole, industrial use of glycine is at absolutely dominant position in glycine consumption in China. It took up 98.3% to the total in 2022, while for food, feed and pharmaceutical uses, their consumption only accounted for about 0.8%, 0.4% and 0.4%, respectively.

Figure 2.4.1-3 Consumption pattern of glycine in China by application field, 2022

Source:CCM

2.4.2 Major application segments of glycine in China

2.4.2.1 Glyphosate

Glyphosate is the most important end-use segment of glycine in China, as 75%-81% of tech-grade glycine has been consumed in glyphosate industry in recent years.

China's glyphosate industry has developed rapidly since 2007 with a fast increase both in capacity and output. By Dec. 2015, total capacity of glyphosate had tripled (on the basis of 2007) to nearly 1 million t/a. Rapid expansion in capacity led to serious overcapacity in the industry and increasingly intensified market competition. Living space for small- and medium-sized enterprises greatly narrowed. As a result of national supply-side reform and increases in penalties for environmental pollution, capacity of glyphosate has shrunk.

Glyphosate market started to recover from H2 2016 with increases in output and operating rate for the following reasons:

• In H2 2016, as the news spread that environmental inspections would be carried out in some regions, the price of glyphosate rose rapidly. Producers expanded production in succession owing to a substantial increase in profit margin.

• China's ban on paraguat AS has led to an increase in demand for glyphosate.

• The US Environmental Protection Agency said it had ruled out the direct relationship between glyphosate and risk of cancer. The European Commission has adopted the act to renew the approval of glyphosate for 5 years. The news was in favor of the glyphosate market and stimulated China's exports of glyphosate.

In 2016–2018, the number of glyphosate producers in China decreased from about 30 to less than 20, and the national glyphosate capacity also declined correspondingly, due to nationwide centralized environmental inspections and production safety inspections.

In 2019–2020, the capacity of glyphosate in China remained unchanged, and the output increased a little.

In 2021, both the capacity and output of glyphosate rose slightly in China, with the capacity reaching 800,000 t/a and the output reaching 604,000 tonnes. In 2022, the capacity expansion continued in China, and the total came to 830,000 t/a. However, the output decreased to 595,000 tonnes.

Item	2014	2015	2016	2017	2018	2019	2020	2021	2022
Output, tonne	534,000	520,000	600,000	600,000	605,000	590,000	595,000	604,000	595,000
Capacity, t/a	909,500	998,500	999,000	905,000	805,000	795,000	795,000	800,000	830,000
Source CCM	1					1		1	1

Table 2.4.2.1-1 Capacity and output of glyphosate technical in China, 2014–2022

Source:CCM

Table 2.4.2.1-2 Consumption of glycine in glyphosate in China, 2018–2022, tonne

Year	2018	2019	2020	2021	2022
Output of glyphosate technical (glycine route)	444,000	442,000	452,000	449,000	450,000
Consumption of glycine	258,000	257,000	263,000	261,000	262,000

Source:CCM

Currently, three production routes are adopted in glyphosate industry in China, namely glycine route, IDAN route and DEA route. Output of glyphosate technical produced through glycine route, the dominated one, accounted for 72%-76% of the total glyphosate output in China in 2018-2022. Additionally, the output of glyphosate technical produced through glycine route increased slightly in 2021-2022.

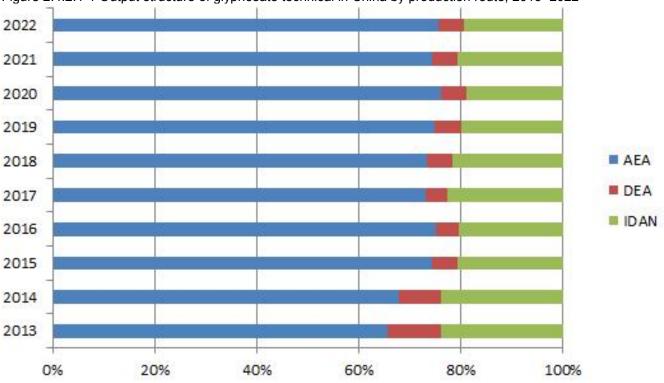
	Duradiana	Statu	Status, Capacity		Output, tonne				
No.	Producer	Abbreviation 2022		2022, t/a	2018	2019	2020	2021	2022
	Fuhua Tongda Chemical Co., Ltd.	Fuhua Tongda	Active	153,000	126,000	129,000	123,000	126,000	130,000
1	Nantong Jiangshan Agrochemical & Chemicals Co., Ltd. *	Nantong Jiangshan	Active	30,000	30,000	29,000	30,000	29,000	28,000
2	Hubei Trisun Chemical Co., Ltd.	Hubei Trisun	Active	130,000	110,000	110,000	115,000	122,000	120,000
2	Inner Mongolia Xingfa Technology Co., Ltd.	Inner Mongolia Xingfa	Active	100,000	29,000	35,000	36,000	28,000	40,000
3	Zhejiang Wynca Chemical Industrial Group Co., Ltd.	Zhejiang Wynca	Active	30,000	31,000	31,000	31,000	30,000	25,000
	Zhenjiang Jiangnan Chemical Co., Ltd.	Zhenjiang Jiangnan	Active	50,000	50,000	50,000	50,000	50,000	45,000
4	Henan HDF Chemical Co., Ltd.	Henan HDF	Active	30,000	28,000	18,000	27,000	25,000	23,000
5	Jiangxi Jinlong Chemical Co., Ltd.	Jiangxi Jinlong	Active	20,000	20,000	20,000	20,000	20,000	20,000
6	Anhui Dongzhi Guangxin Agrochemical Co., Ltd.	Anhui Guangxin	Active	20,000	20,000	20,000	20,000	19,000	19,000
	Others			15,000	0	0	0	0	0
	Total				444,000	442,000	452,000	449,000	450,000

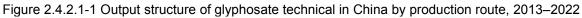
Table 2.4.2.1-3 Major glyphosate producers adopting glycine route in China, 2022

Note:Producers with * have at least two routes of glyphosate production, and here only the capacity and output of glycine route are presented.

Source:CCM

The popularity of glycine route for glyphosate production is attributed to the following factors:


• Simple process: Compared with the other two routes, glycine route is quite simple and easier for new comers to master.


• **Abundant raw materials:** All raw materials including glycine, paraformaldehyde and dimethyl phosphite are in abundant supply in China.

• **Mature technology:** Since developed in 1987, glycine route has been widely applied in China for years. The whole process is quite mature at present, and the by-product recycling technology has been developing and helped reduce the cost in recent years.

• Establishment of complete industrial chain: These key players try to build complete industrial chain from upstream materials (chloroacetic acid, glycine, phosphorus trichloride, dimethyl phosphite, or paraformaldehyde) to final products (glyphosate formulations) and by-products (methylal, methyl chloride, phosphorous acid, sodium salts, ammonium salts, or acids) to reduce the cost and strengthen the competitiveness.

The glycine route will still have a good future in China in the next five years, though glycine route faces challenges in the aspect of environmental protection as it causes severer water pollution than other routes. Output of glyphosate produced by glycine route will maintain its leading position and is expected to keep at a high level.

Most glyphosate producers have signed contracts with glycine producers to guarantee the supply of glycine in China. Large-scale glyphosate producers such as Zhejiang Wynca and Jiangxi Jinlong, prefer signing contracts with different glycine producers.

No.	Glycine producer	Glycine consumer
1	Hebei Donghua	Zhejiang Wynca, Nantong Jiangshan, Anhui Guangxin, etc.
2	Hubei Trisun	Hubei Trisun, Jiangxi Jinlong, Inner Mongolia Xingfa, etc.
3	Fuhua Tongda	Fuhua Tongda
4	Linyi Hongtai	Zhejiang Wynca
5	Inner Mongolia Xingfa	Inner Mongolia Xingfa
6	Henan HDF	Henan HDF

Table 2.4.2.1-4 Main glycine producers and consumers in glyphosate industry in China, 2023

Source:CCM

Note:1. AEA, DEA and IDA are the production routes for glyphosate. 2. AEA is glycine production route. Source:CCM

2.4.2.2 Food

In the food industry, glycine is mainly used as a nutritional supplement in food additives to improve flavor. Only 2,769 tonnes of food-grade glycine, taking up 5.5% of the national output of food-grade glycine, was applied in the food industry in 2022, 152 tonnes more than that in 2021.

No.	End-use segment		Addition ratio, %	Usage	
1	Minced fish products, peanut butter		1.00–2.00	Restraining function of colon bacillus and other Bacillus species	
2		Wine	0.45		
3	Alcoholic drinks	Whisky	0.20	Flavoring agents and sweetening agents	
4		Champagne	1.00		
5	Soup spices		2.00		
6	Liquor pickled prod	ucts	1.00	Flavoring agents, with prawn and cuttlefish flavor	
7	Salted preserves		0.3–0.7	Defference i di una construitte construitte construitte	
8	Pickles		0.05–0.5	Buffer solutions and acidity regulators	
9	Creams		0.1–0.5	Declaration stars and life for three to four times	
10	Cheeses		0.3–0.7	Prolonging storage life for three to four times	
11	Bakery products		0.5	Otabilizing agents with the function of entioxidation	
12	Semolina		0.1–0.5	 Stabilizing agents with the function of antioxidation 	
Sour	ource:CCM		1		

Table 2.4.2.2-1 Main end-use segments of glycine in China's food industry

Source:CCM

As a synthetic amino acid, if taken in excess, glycine cannot be absorbed by humans, it will also break the balance with other amino acids that being absorbed, and thus have an adverse effect upon health. According to the National Food Safety Standard for Food Additive Use (GB 2760), glycine cannot be used in dairy products in China. However, in order to reduce production costs, some milk beverage producers once used glycine instead of milk powder to increase the content of protein. After rectification, this rarely happens now.

2.4.2.3 Feed

In the feed industry, glycine is mainly used as a nutritional supplement in feed additives and feed attractants. About 1,528 tonnes of feed-grade glycine, was applied in the feed industry in 2022, not much different from 2021; the volume constitutes 16.5% of the national output of feed-grade glycine.

Glycine used as a feed additive can not only improve nutrition level, but also have the effects of antioxidation and prolonging the shelf life of feed. In China, glycine is mainly used in cattle feed, sheep feed and chicken feed, with an addition ratio of 0.07%.

Glycine used as a feed attractant has the following advantages:

- Weight gain: It can improve aquatic animal food intake and effectively accelerate the growth of animals. Usually, the glycine addition ratio is about 0.2%–1.5%.
- Feed saving: As a better feed attractant, before glycine feed falls into the bottom, aquatic animals will soon eat up the feed. Therefore, it makes efficient use of feed to avoid waste.

• Increase in nutrition level: Tests have shown that 1 unit of glycine has the same nutritional value as 3.5 units of methionine.

• Entrapping agent: People use glycine feed to entrap fish, and the fish capture rate can reach 85%.

2.4.2.4 Pharmaceutical

Glycine is widely used in the pharmaceutical industry, applied in protective agents, stabilizing agents, amino acid nutritional injection solutions, intermediates of some medicaments, etc. About 1,468 tonnes of pharmaceutical-grade glycine, accounting for 67.4% of the national output of pharmaceutical-grade glycine, was applied in the pharmaceutical industry in 2022.

No.	End-use segment	Addition ratio, %	Usage
1	Freeze-dry preparation	2.0	
2	Glycyrrhetinic acid	1.9	Protective agents
3	Rescinnamine injection	2.0	
4	Bleomycin Injection	0.1	Stabilizing agents
5	Glycine irrigation	1.5	
6	Oral solution	0.09	Amino acid injection solutions
7	Propacetamol hydrochloride	49.7	
8	Compound preparation of calcium carbonate	30.0	Intermediates of some medicaments
9	Glutamic acid, alanine acid and glycine acid capsules	11.0	
	a:CCM	1	

Table 2.4.2.4-1 Main end-use segments	of glycine i	in China's pha	rmaceutical industry	'

Source CCM

2.5 Raw materials for glycine production in China, 2023

Urotropine and chloroacetic acid are two main raw materials for glycine production via the chloroacetic acid ammonolysis process, and both have weak market positions compared with the downstream sectors of glycine, thereby having a slight impact on China's glycine industry.

2.5.1 Urotropine

Urotropine is prepared from the reaction of formaldehyde and liquid ammonia. It is a kind of raw material for curing agent of phenolic plastics, catalytic agent of amino plastics, blowing agent H (DPT) of vulcanized rubbers, black explosives and pesticides.

The national capacity of urotropine was about 479,000 t/a in 2023. For the top 15 producers, their total capacity accounted for 86.2% of the national total. About half of urotropine producers in China are located in Xinjiang and Hebei provinces, both of which are important production bases for formaldehyde and liquid ammonia-urotropine's raw materials.

No.	Company	Location	Capacity, t/a
1	Hutubi Ruiyuantong Chemical Co., Ltd.	Xinjiang	50,000
2	Xinjiang Wanchang New Energy Co., Ltd.	Xinjiang	50,000
3	Shandong Runyin Bio-chemicals Co., Ltd.	Shandong	30,000
4	Tianshan Green Kuqa Pertrochemical Co., Ltd.	Xinjiang	30,000
5	Jiaozuo Runhua Chemical Industry Co., Ltd.	Henan	30,000

 Table 2.5.1-1 Main urotropine producers in China, 2023

No.	Company	Location	Capacity, t/a
6	Inner Mongolia Jiaquan Chemical Technology Co., Ltd.	Inner Mongolia	30,000
7	Shanxi Fengxi Fertilizer Industry (Group) Co., Ltd.	Shanxi	30,000
8	Xinjiang Tianrui Energy Chemical Co., Ltd	Xinjiang	30,000
9	Hebei Yuhang Chemical Industry Co., Ltd.	Hebei	20,000
10	Jiangsu Sanmu Group Co., Ltd.	Jiangsu	20,000
11	Shanxi Lanhua Sci-tech Venture Co., Ltd.	Shanxi	20,000
12	Xinjiang Huachun Energy Co., Ltd.	Xinjiang	20,000
13	Gansu Tailu Technology Chemical Co., Ltd.	Gansu	20,000
14	Hubei Trisun Chemical Co., Ltd.	Hubei	18,000
15	Bazhou Zhengyuan Chemicals Co., Ltd.	Xinjiang	15,000
	Sub-total		413,000
	National total		479,000
	Share of top 15		86.2%

Source:CCM

The top five urotropine producers (by capacity) took up 39.7% of the national capacity of urotropine in 2023. The Herfindahl-hirschman Index (HHI) of urotropine in China was 624, which is far lower than 1,800, suggesting that urotropine market in China is not concentrated and it would be easy for this industry to realize capacity concentration if any merger and acquisition is proposed. According to the US Department of Justice's merger guidelines, an industry is considered "concentrated" if the HHI exceeds 1,800.

Table 2.5.1-2 Industrial concentration of urotropine in terms of capacity in China, 2023

Item	Share
Top five concentration ratio	39.7%
Top ten concentration ratio	66.8%
Herfindahl-Hirschman Index (HHI)	624
	Top five concentration ratio

Source:CCM

In China, urotropine is mainly consumed in phenolic plastics, explosives and glycine. About 40% of urotropine is used as a curing agent of phenolic plastics; 20% is consumed in the production of cyclotrimethylene trinitramine (RDX) and about 15% is used in glycine.

To sum up, China's urotropine industry has entered a mature stage. Though a certain amount of urotropine still needs to be imported to satisfy domestic demand each year, urotropine will not impose a great influence on glycine industry.

2.5.2 Chloroacetic acid

Chloroacetic acid, a kind of chemical intermediate, is mainly used for the production of carboxymethyl cellulose (CMC), agrochemicals and surfactants overseas. However, in China, the application situation is different, with pesticides being the largest end-use segment, followed by pharmaceuticals, dyeing, CMC,

carboxymethyl starch, etc.

There were about 25 chloroacetic acid producers in China with a total capacity of about 1,599,000 t/a in 2023. Shandong, Hubei and Hebei provinces are the main production areas.

Large glycine producers, such as Hebei Donghua, Hubei Trisun, Linyi Hongtai, and Fuhua Tongda, selfdeveloped chloroacetic acid production installations to acquire chloroacetic acid, to reduce production cost of glycine.

No.	Company	Location	Capacity, t/a			
1	Hebei Donghua Chemical Group	Hebei	250,000			
2	Hubei Minteng New Material Technology Co., Ltd.	Hubei	240,000			
3	Hubei Trisun Chemical Co., Ltd.	Hubei	160,000			
4	Shandong Minji New Material Technology Co., Ltd.	Shandong	120,000			
5	Linyi Hongtai Chemical Co., Ltd.	Shandong	100,000			
6	Henan Pingmei Shenma Dongda Chemical Co., Ltd.	Henan	100,000			
7	Nouryon Chemicals MCA (Taixing) Co., Ltd.	Jiangsu	80,000			
8	Henan Lianchuang Chemical Co., Ltd.	Henan	60,000			
9	Fuhua Tongda Chemical Co., Ltd.	Sichuan	55,000			
10	Hebei Bawei Chemical Co., Ltd.	Hebei	50,000			
11	Dongying Huatai Fine Chemical Co., Ltd.	Shandong	50,000			
12	Shanxi Yushe Chemical Co., Ltd.	Shanxi	50,000			
13	Jiangsu SOPO New Material Technology Co., Ltd.	Jiangsu	50,000			
14	CABB Jinwei Specialty Chemicals (Jining) Co., Ltd.	Shandong	45,000			
15	Weifang Binhai Petrochemical Co., Ltd.	Shandong	40,000			
	Sub-total					
	National total					
	Share of top 15					

 Table 2.5.2-1 Main chloroacetic acid producers in China, 2023

Source:CCM

The top five chloroacetic acid producers (by capacity) accounted for about 54.4% of the domestic market share in 2023. The Herfindahl-Hirschman Index (HHI) was 818 in 2023, suggesting that the market is not concentrated.

No.	Item	Value
1	Top five concentration ratio	54.4%
2	Top ten concentration ratio	76.0%
3	Herfindahl-Hirschman Index (HHI)	818
3		8

Table 2.5.2-2 Industrial concentration of chloroacetic acid in terms of capacity in China, 2023

Source:CCM

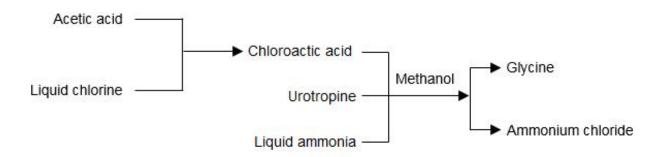
Although chloroacetic acid in China has faced overcapacity for many years, domestic capacity will continue to increase in the coming few years.

2.6 Production technology of glycine

There are three major glycine production methods in the world, namely the chloroacetic acid ammonolysis process, the Strecker process and the Hydantion process.

In China, glycine is mainly produced via the chloroacetic acid ammonolysis process, which is a mature production technology adopted by almost all domestic glycine producers except Guang'an Chengxin.

Guang'an Chengxin is the only company in China adopting the Hydantion process to produce glycine. This production process has advantages such as fewer reaction steps, higher yield, higher purity, lower production cost and less pollution, compared with the chloroacetic acid ammonolysis process. The company uses glycolonitrile to produce glycine.


2.6.1 Brief introduction of the chloroacetic acid ammonolysis process

The reaction equation of chloroacetic acid ammonolysis process is as follows:

$$CICH_2COOH + 2NH_3 \rightarrow NH_2CH_2COOH + NH_4CI$$

Main materials for glycine production by chloroacetic acid ammonolysis process include chloroacetic acid, ammonia and urotropine. Chloroacetic acid and ammonia are mixed in urotropine solution. When the reaction is finished, methanol is added to the solution for separation of glycine from the by-product ammonium chloride.

Figure 2.6.1-1 Flowchart of chloroacetic acid ammonolysis process for glycine production

Source:CCM

As a major glycine production method in China, chloroacetic acid ammonolysis process has some advantages:

- Simple and mature process
- Low requirements for equipment performance
- Easy availability of raw materials

However, the disadvantages of this method are also obvious:

High production cost

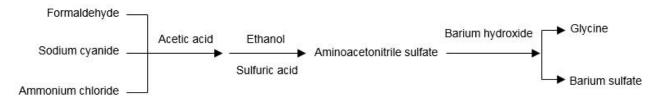
Besides huge consumption of raw materials, there is also quite high energy consumption for removal and disposal of a large quantity of ammonium chloride in wastewater in the chloroacetic acid ammonolysis process. Meanwhile, the catalyst—urotropine cannot be reclaimed, which largely increases production costs as well.

Poor product quality

Only tech-grade glycine can be produced through chloroacetic acid ammonolysis process. In order to get higher grade glycine, tech-grade glycine needs to be decolorized and recrystallized.

Serious environment pollution

Three tonnes of wastewater can be generated from one-tonne glycine production through chloroacetic acid ammonolysis process and wastewater discharged contains large amounts of ammonium chloride, formaldehyde and ammonia nitrogen.


Regional concentration

Companies adopting this process have to set up their factories close to raw material producers, as liquid chlorine and liquid ammonia, the raw materials of chloroacetic acid, are hazardous chemicals and difficult to transport. So a large number of chloroacetic acid and glycine producers in China are located in Hebei Province, which is one of China's major production areas of liquid chlorine and liquid ammonia.

2.6.2 Brief introduction of the Strecker process

Strecker process is a popular glycine production method abroad.

Figure 2.6.2-1 Flowchart of the Strecker process for glycine production

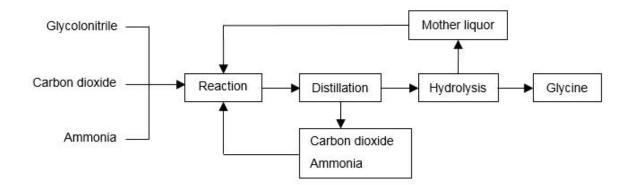
Source:CCM

The Strecker process is quite suitable for large-scale glycine production, mainly attributed to the ease of purification of the product. However, sodium cyanide, a major raw material in the Strecker process, is poisonous, so the process has disadvantages such as harsh operating conditions, complex process and long synthetic process route.

Some foreign research institutions have improved the Strecker process—replacing sodium cyanide with hydrocyanic acid, which shortens the synthesis process, lowers production cost, and achieves higher product yield.

2.6.3 Brief introduction of the Hydantion process

Glycine production by the Hydantion process uses glycolonitrile, carbon dioxide and ammonia as raw materials. Glycolonitrile can be produced after formaldehyde reacts with hydrogen cyanide with excess amounts of sodium cyanide as the catalyst.


Firstly, glycolonitrile reacts with carbon dioxide and ammonia at about 100 $^{\circ}$ C to form a more stable compound. Subsequently, the main reaction proceeds at about 150 $^{\circ}$ C. After the reactions are steady, the reaction solution is concentrated to remove water, ammonia and carbon dioxide, thereby undergoing crystallization to obtain glycine. The water, ammonia and carbon dioxide removed could be recycled and the mother liquor is also fed to the reaction zone. The glycine yield could be significantly improved by recycling the mother liquor.

Using the mixture of compounds, namely ammonia and carbon dioxide under the reaction conditions, with the presence of ammonium carbonate and ammonium bicarbonate, is possible to achieve favorable results.

The reaction equation of the Hydantion process is as follows:

Glycolonitrile + CO₂ + NH₃ \rightarrow Hydantion \rightarrow NH₂CH₂COOH

Figure 2.6.3-1 Flowchart of the Hydantion process for glycine production

Source:CCM

Using glycolonitrile as a raw material to produce glycine, the Hydantion process not only solves the shortcoming that hydrocyanic acid is difficult to handle, but also maintains the advantages that the improved Strecker process has.

The Hydantion process adopted by Guang'an Chengxin uses glycolonitrile, ammonia, sodium hydroxide and sulfuric acid as raw materials, with iminodiacetic acid and sodium sulfate anhydrous as by-products.

2.6.4 Development trend of glycine technology

In the next few years, unless there are important technological innovations in glycine production, the chloroacetic acid ammonolysis process will remain prevalent, supplemented by the Hydantion process.

As for the chloroacetic acid ammonolysis process, though glycine made by this process has a purity of only 95% with high chloride and formaldehyde content, the process is mature and the key raw materials are abundant and also easily produced (simple technology).

The Hydantion process has advantages of fewer reaction steps, high purity (98.5%), lower production cost and less pollution. However, it is difficult to secure a steady supply of natural gas, which acts as the initial raw material for glycine production, since consumption need for this product has expanded quickly these years. In addition, the Hydantion process has high requirements on production equipment.

3 Forecast on glycine in China, 2024–2028

3.1 Influencing factors

Major factors concentrate on the following aspects. Glyphosate market will remain the most important influencing factor for the development of Chinese glycine industry in the future.

No.	Impact of development	Glycine industry							
1	Glyphosate market	The market size of glyphosate, especially glyphosate produced via glycine route, will greatly affect glycine, and glyphosate produced via glycine route will face great challenges from that via the IDAN route and the DEA route.							
2	Production technology	Only Guang'an Chengxin (formerly Guang'an Chengyang) adopts Hydantion process, which will lead to great challenges to glycine producers adopting the chloroacetic acid ammonolysis process if this technology will be improved and become mature in the future.							
3	Location limitation	Policy on transportation of hypertoxic chemicals including chlor-alkali, chloroacetic acid and hydrogen cyanide (upstream materials of glycolonitrile) is very strict in China. Glycine production by the chloroacetic acid ammonolysis process is therefore limited to be distributed in the places that are abundant in raw materials of chlor-alkali and chloroacetic acid.							

Table 3.1-1 Major factors influencing China's glycine industry

Source:CCM

3.2 Forecast on glycine supply in China

The national capacity of tech-grade glycine is estimated to be over 808,400 t/a in 2028, if those potential glycine projects proceed smoothly.

China's output of tech-grade glycine will reach about 433,000 tonnes in 2028, with a CAGR of 3.2% during 2024–2028. Glycine route glyphosate will maintain its leading position in China in the coming five years, ensuring the increasing demand for tech-grade glycine from glyphosate industry.

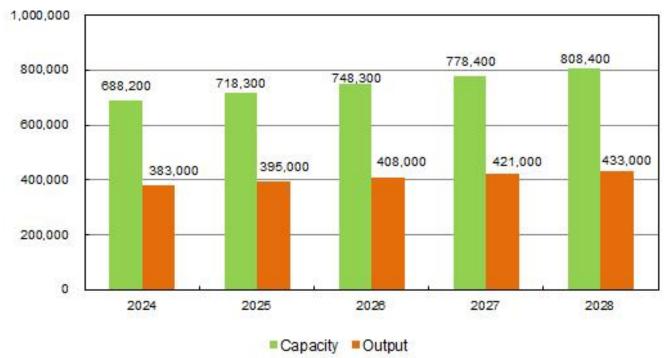


Figure 3.2-1 Predicted capacity and output of tech-grade glycine in China, 2024–2028

Source:CCM

3.3 Forecast on glycine demand in China

Domestic demand for glycine from food, feed and pharmaceutical fields has kept increasing stably year by year. Growing demand for glycine from these three fields is expected to continue due to good properties and relatively wide application of glycine with these three grades, but it has limited impact on domestic glycine

market structure since the tech-grade glycine still takes up nearly 98% of Chinese glycine market.

On 18 Oct. 18, 2022, Shandong Weifang Rainbow Chemical Co., Ltd. proposed to raise USD32.79 million to invest in the 25,000 t/a glyphosate continuous technological transformation project—Its existing capacity of 15,000 t/a through the glycine route and of 10,000 t/a through the IDAN route will be merged and upgraded in technology to build a set of 25,000 t/a glycine-route glyphosate production equipment as a whole, which may lead to an increase in demand for glycine.

With the promotion of GM crops especially GM soybean and corn, demand for glyphosate is expected to keep increasing in the coming few years, which will ensure sustainably robust demand for glycine over the next five years. China's demand for tech-grade glycine is estimated to reach 422,100 tonnes in 2028, with a CAGR of 3.0% during 2024–2028.

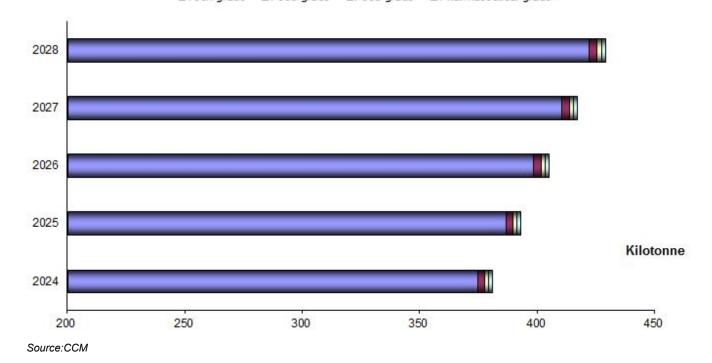


Figure 3.3-1 Predicted market demand for glycine in China by grade, 2024–2028 Tech-grade Food-grade Feed-grade Pharmaceutical-grade

4 Investment opportunities and suggestions

Table 4-1 Strengths and weaknesses of Chinese glycine industry

Strength	Weakness
 Large scale production (not too many producers, high industrial concentration) Relatively complete industrial chain Sufficient supply of raw materials such as chlor-alkai and chloroacetic acid, which is helpful for cost control Growing demand for glycine from glyphosate industry due to increasing global demand for glyphosate 	 Tech-grade glycine highly depended on glyphosate market Food-, feed- and pharmaceutical-grade glycine highly depended on overseas market Less-advanced technology—the chloroacetic acid ammonolysis process is taken by almost all producers Oversupply of glycine

Source:CCM

China's glycine industry will face many challenges in the future, and China shall accelerate the integration of the industry.

Major challenges for the industry are as follows:

- Poor profit

It is one of the most important factors influencing the operating rate, and slim profit is unlikely to change in the short run.

- Oversupply

With blind expansion, oversupply has been aggravated in general, and the domestic glycine producers have weak bargaining power with glyphosate producers.

- High dependence on glyphosate

No other potential applications have been developed, and domestic glycine industry becomes increasingly passive and susceptible when facing market risks.

- More investment in environmental protection

Glycine producers will spend a lot on pollutant treatment due to stricter environmental policies released by the Chinese government.

Integration of China's glycine industry is an opportunity for both large glycine and glyphosate producers. Some small glycine producers have suspended or stopped glycine production, and more and more small- or medium-sized glycine producers will be eliminated in the coming few years. Thus, it offers a chance for top domestic producers to merge with these small- or medium-sized companies to enhance competitiveness, and for top glyphosate producers to build a complete industrial chain for cost reduction.

5 Profile of key glycine producers in China

5.1 Hebei Donghua Chemical Group

Address: No. 89 Erhuan East Road, Shijiazhuang City, Hebei Province 050037, P. R. China Tel: +86-311-83097676, 66619888, 83097811; +86-318-6109699, 6109877 Fax: +86-311-85318041, +86-318-6109698 E-mail: donghua@glycine.com.cn

1. Company background

Hebei Donghua Chemical Group (Hebei Donghua), founded in 1979, is composed of 5 related companies (sales companies excluded), among which 3 are engaged in tech-grade glycine production.

- Shijiazhuang Donghua Jinlong Chemical Co., Ltd. has production capacity of 110,000 t/a tech-grade glycine and 20,000 t/a glycine of other three grades.

- Hebei Donghua Jiheng Chemical Co., Ltd., established in 2005, produces tech-grade glycine only with capacity of 90,000 t/a.

- Hebei DONGHUA Jiheng Aminoacid SCI.&TEC. Co., Ltd. produces glycine of other three grades with capacity of 15,000 t/a.

- Shijiazhuang Chiyuen Chemical Co., Ltd. (Chiyuen Chemical, the former Hebei Donghuajian Chemical Co., Ltd.) has two tech-grade glycine production bases with total capacity of 32,000 t/a.

- Shijiazhuang Chiyuen Food Technology Co., Ltd., established in 2015, produces glycine of other three grades with capacity of 12,000 t/a.

2. Product species

Main products of Hebei Donghua are as follows:

- Glycine: tech-grade, food-grade, feed-grade, pharmaceutical-grade
- Chloroacetic acid
- Zinc glycinate, ferrous glycinate, ferric glycinate, magnesium glycinate, calcium glycinate, sodium glycinate
- Glycine phosphate, glycine fumarate, glycine citrate
- Lysine carbonate
- Hydantoin
- Di-sodium glycine carbonate (Di-SGC)
- Mono-sodium glycine carbonate (Mono-SGC)

3. Situation of glycine

Table 5.1-1 Capacity and output of glycine in Hebei Donghua, 2019–2023

Year	2023		2022		2021		2020		2019	
	Tech- grade	Others								
Capacity, t/a	192,000	35,000	192,000	35,000	192,000	35,000	192,000	35,000	192,000	35,000
Output, tonne	130,000	20,000	130,000	20,000	130,000	20,000	130,000	20,000	130,000	20,000

Note:Others include food-grade, feed-grade and pharmaceutical-grade. Source:CCM

Shijiazhuang Donghua Jinlong Chemical Co., Ltd.'s 10,000 t/a tech-grade glycine was built up in May 2018 and put into trial production in September 2018. Shijiazhuang Chiyuen Food Technology Co., Ltd. is a subsidiary of Chiyuen Chemical, and its 10,000 t/a glycine (the other three grades) was put into production in May 2019.

Hebei Donghua produces chloroacetic acid as well, so the raw material supply is guaranteed and the production cost of its glycine could be reduced greatly.

Its glycine is sold all over the country. The company is highly recognized by key glyphosate producers in China such as Zhejiang Wynca, and Nantong Jiangshan, for good product quality and abundant supply.

The company has passed international certifications such as ISO22000, ISO9001, ISO14001, OHSAS18001, FAMI-QS, MUI-HALAL, KOSHER and REACH, and its products are exported to Thailand, India, Japan, Switzerland, Germany, etc.

5.2 Hubei Trisun Chemical Co., Ltd. & Inner Mongolia Xingfa Technology Co., Ltd.

Hubei Trisun Chemical Co., Ltd.

Address: No. 66-4 Xiaoting Street, Xiaoting District, Yichang City, Hubei Province 443000, P. R. China Tel: +86-717-6530551, 6760659 Fax: +86-717-6760308 E-mail: sales@xingfagroup.com

1. Company background

Hubei Trisun Chemical Co., Ltd. (Hubei Trisun) is 100% owned by Hubei Xingfa Chemicals Group Co., Ltd.

In 2018, Hubei Trisun completed the acquisitions of Yichang Jinxin Chemical Co., Ltd. (deregistered already) and Inner Mongolia Xingfa Technology Co., Ltd. (Inner Mongolia Xingfa, formerly known as Inner Mongolia Tenglong Fine Chemical Co., Ltd.)

Its key products include:

- Glyphosate: 180,000 t/a
- Glycine: 100,000 t/a
- Chloroacetic acid: 160,000 t/a
- Urotropine: 18,000 t/a
- Phosphorus trichloride: 210,000 t/a
- Calcium chloride: 80,000 t/a
- Others

2. Situation of glycine

Table 5.2-1 Capacity and output of glycine in Hubei Trisun, 2019–2023

Year	2023	2022	2021	2020	2019
Capacity, t/a	100,000	100,000	100,000	100,000	100,000
Output, tonne	75,000	82,000	88,000	80,000	84,000

Source:CCM

Hubei Trisun produces tech-grade glycine only. Its glycine is firstly supplied to itself and Inner Mongolia Xingfa, and the rest is sold to other glyphosate producers.

Its key customers include Inner Mongolia Xingfa, Jiangxi Jinlong, etc.

Inner Mongolia Xingfa Technology Co., Ltd.

Address: Wuda Industrial Park, Wuhai Economic Development Zone, Wuhai City, Inner Mongolia Autonomous Region 016040, P. R. China Tel: +86-473-6988121, 6910502 Website: www.tlonggroup.com

1. Company background

Inner Mongolia Xingfa mainly produces glyphosate technical and its intermediates.

Its key capacities include:

- Glyphosate technical: 50,000 t/a

- Glycine: 10,000 t/a

- Chloroacetic acid: 10,000 t/a

- Dimethyl phosphate: 54,000 t/a
- Phosphorus chloride: 60,000 t/a

2. Situation of glycine

Inner Mongolia Xingfa produces tech-grade glycine only, and its 10,000 t/a glycine production line was put into production in 2015. All of its glycine is consumed by itself for the production of glyphosate technical. The glycine line was operated at full capacity during 2015–2023.

Inner Mongolia Xingfa's EIA report of "organic silicon new material integrated and recycling project" was published in April 2021, and this project was scheduled to construct 50,000 t/a glyphosate technical, 60,000 t/a glycine, 90,000 t/a chloroacetic acid, etc. In the actual construction, the project has installed 10,000 t/a capacity for glycine and a 60,000 t/a expansion is still planned.

5.3 Fuhua Tongda Chemical Co., Ltd.

Address: Qiaogou Town, Wutongqiao District, Leshan City, Sichuan Province 614800, P. R. China Tel: +86-833-3186008, +86-833-3352686 Fax: +86-833-3359989 E-mail: fhny@fuhuagroup.com Website: www.fhtdchem.com

1. Company background

Fuhua Tongda Chemical Co., Ltd. (Fuhua Tongda, formerly known as Sichuan Leshan Fuhua Tongda Agrochemical Technology Co., Ltd.) established in Dec. 2007, specializes in R&D, production and sale of glyphosate and related agrochemicals.

Its products include:

- Glycine: 40,000 t/a
- Glyphosate: 153,000 t/a
- Ion-exchange membrane caustic soda: 500,000 t/a
- Paraformaldehyde: 60,000 t/a
- Hydrogen peroxide: 120,000 t/a
- Sodium tripolyphosphate: 30,000 t/a
- Glufosinate-ammonium: 6,000 t/a

2. Situation of glycine

Table 5.3-1 Capacity and output of glycine in Fuhua Tongda, 2019–2023

Year	2023	2022	2021	2020	2019
Capacity, t/a	40,000	40,000	40,000	40,000	40,000
Output, tonne	26,000	26,000	26,000	25,000	25,000

Source:CCM

Fuhua Tongda produces tech-grade glycine only. It started producing tech-grade glycine in 2016, and its glycine is used for its own glyphosate production. It also purchases glycine from other glycine producers such as Hebei Donghua. Its previously planned second phase of the 80,000 t/a tech-grade glycine project will no longer be built.

5.4 Linyi Hongtai Chemical Co., Ltd.

Address: Huaihai Road, Economic Development Zone, Ju'nan County, Linyi City, Shandong Province 276600, P. R. China Tel: +86-539-7858888 Person to contact: Mr. Wang E-mail: hongtailxl@163.com

1. Company background

Linyi Hongtai Chemical Co., Ltd. (Linyi Hongtai) was established in 2009 with a registered capital of RMB100 million.

Its products include:

- Glycine: 70,000 t/a
- Hydrochloric acid: 112,000 t/a
- Ammonium chloride: 56,000 t/a
- Calcium chloride: 100,000 t/a

2. Situation of glycine

Table F 4 4	Conceiterone		ine in Linyi Hong	1-: 0010 0000
12016 5 4-1	Capacity and	1 OLHOLH OF OIVC	ιρε τη ττιργί Ηρρο	121 - 7019 - 7073
	oupdoity and	a output of give		ui, 2010 2020

Year	2023	2022	2021	2020	2019
Capacity, t/a	70,000	70,000	70,000	70,000	50,000
Output, tonne	32,000	35,000	35,000	35,000	28,000
Course COM			•		

Source:CCM

Linyi Hongtai produces tech-grade glycine only. The company has expanded its glycine capacity from 50,000 t/a to 70,000 t/a, and it has four glycine production lines with the capacity of 10,000 t/a, 20,000 t/a, 20,000 t/a and 20,000 t/a respectively.

Its customers include Zhejiang Wynca and Nantong Jiangshan.

5.5 Guang'an Chengxin Chemical Co., Ltd.

Address: Xinqiao Industrial Park, Guang'an District, Guang'an City, Sichuan Province 638000, P. R. China Tel: +86-826-2820015, 2820006; +86-311-85695996 E-mail: guanganchengxin@126.com, guanganxiaoshou@163.com

Website: www.guanganchengxin.com

1. Company background

Guang'an Chengxin Chemical Co., Ltd. (Guang'an Chengxin) acquired Guang'an Chengyang Bio-tech Co., Ltd. (Guang'an Chengyang) in March 2019. Two projects (30,000 t/a glycine, 2,000 t/a food additives) of Guang'an Chengyang were mergered into Guang'an Chengxin.

Key products of Guang'an Chengxin include:

- Glyphosate technical: 20,000 t/a
- PMIDA: 15,000 t/a
- IDAN: 25,000 t/a
- Formaldehyde: 50,000 t/a
- Glycine: 28,000 t/a (=TECH 20,000 + Others 8,000)
- Glycolonitrile: 75,000 t/a
- Others

2. Situation of glycine

Year	2023		2022		2021		2020		2019	
	Tech- grade	Others								
Capacity, t/a	20,000	8,000	20,000	8,000	20,000	8,000	20,000	8,000	20,000	8,000
Output, tonne	18,000	2,500	18,000	2,500	17,000	2,500	17,000	2,500	17,000	2,500

Table 5.5-1 Capacity and output of glycine in Guang'an Chengxin, 2019–2023

Note:Others include food-grade, feed-grade and pharmaceutical-grade. Source:CCM

Guang'an Chengxin's 30,000 t/a glycine production lines (20,000 t/a tech-grade and 10,000 t/a food-grade) were built up and put into trial production in Nov. 2015. It reformed its 10,000 t/a food-grade glycine production line in 2017, and the current lines are 8,000 t/a food-grade glycine, 500 t/a food-grade sodium ferrocyanide, 500 t/a food-grade potassium ferrocyanide, 500 t/a food-grade disodium ethylene diamine tetraacetate, and 500 t/a food-grade ferric sodium edelate. In Dec. 2021, Guangan Chengxin announced the technology transformation and expansion construction project, including 30,000 t/a glycine; as of Feb. 2024, the project has been completed and put into production.

Guang'an Chengxin is the only glycine producer that adopts the Hydantion process in China, and the key raw material—glycolonitrile is produced by itself.

5.6 Henan HDF Chemical Co., Ltd.

Address: Fine Chemical Zone, Zhangpan Town, Xuchang County, Henan Province 461000, P. R. China Tel: +86-374-5699599 Fax: +86-374-5699618 Person to contact: Mr. Sheng E-mail: sales@xcdfchem.com Website: www.xcdfchem.com

1. Company background

Henan HDF Chemical Co., Ltd. (Henan HDF), former Xuchang Dongfang Chemical Co., Ltd., is a well-known chemical enterprise in China and mainly engages in the R&D, production and sale of fine chemicals and pesticides.

Its products include:

- Glycine: 15,000 t/a
- Chloroacetic acid: 10,000 t/a
- Glyphosate technical: 30,000 t/a
- Dimethyl phosphate: 30,000 t/a
- Hydrochloric acid: 35,000 t/a
- Ammonium chloride: 5,000 t/a
- Methyl chloride: 26,000 t/a

2. Situation of glycine

Table 5.6-1 Capacity and output of glycine in Henan HDF, 2019–2023

Year	2023	2022	2021	2020	2019
Capacity, t/a	15,000	15,000	15,000	15,000	15,000
Output, tonne	5,000	5,000	11,000	10,000	11,000
Source:CCM	1			1	

Source:CCM

Henan HDF produces tech-grade glycine only and its glycine is mainly consumed by itself for the production

of glyphosate technical. Henan HDF published a 6,000 t/a chloroacetic acid and 20,000 t/a glycine expansion plan in June 2019, but this project had not been built as of June 2022. The environmental impact assessment of the 15,000 t/a glycine technical transformation and expansion project with an annual output was publicized for the second time, in March 2022.

5.7 Hebei Chuncheng Biological Technology Co., Ltd.

Address: No.14 Weiyi Road, Salt Chemical Park, Ningjin County, Xingtai City, Hebei Province 054000, P. R. China

Tel: +86-311-66561796 E-mail: glycine@hbccbio.com Website: www.hbccbio.com

1. Company background

Hebei Chuncheng Biological Technology Co., Ltd. (Hebei Chuncheng), was established in March 2015, covering an area of 67,000 square meters. The company's main products include glycine, L-alanine, DL-alanine, L-lysine hydrochloride, L-threonine, L-methionine, L-cysteine hydrochloride, L-phenylalanine, L-glutamic acid, L-cysteine, L-cysteine, L-arginine, L-leucine, L-tryptophan, D-xylose, L-aspartic acid and so on. The company has been certified to ISO9001-2015, ISO22000-2005, FSSC 22000, Kosher and Halal.

2. Situation of glycine

	2023		2022		2021		2020		2019	
Year	Tech- grade	Others								
Capacity, t/a	10,000	3,000	10,000	3,000	10,000	3,000	10,000	3,000	10,000	3,000
Output, tonne	3,500	2,000	3,500	2,000	3,500	2,000	5,000	1,500	5,000	1,000

Table 5.7-1 Capacity and output of glycine in Hebei Chuncheng, 2019–2023

Note:Others include food-grade, feed-grade and pharmaceutical-grade. Source:CCM

Hebei Chuncheng's production lines of 10,000 t/a tech-grade glycine and 3,000 t/a food-grade glycine were built up in early 2017. Its potential project's 2nd phase (14,000 t/a tech-grade and 3,000 t/a food-grade glycine) has no further information yet.

5.8 Hebei Huaheng Biological Technology Co., Ltd.

Address: No. 777 Xinghua South Street, Jizhou District, Hengshui City, Hebei Province 053200, P. R. China Tel: +86-318-8628255 Fax: +86-318-8628286 E-mail: jizhouhuaheng@163.com Website: www.hebeihuaheng.com

1. Company background

Hebei Huaheng Biological Technology Co., Ltd. (Hebei Huaheng), established in Feb. 2011, is a subsidiary of Jizhou Huaheng Group, which is comprised of Hebei Huaheng and Hebei Gerunde Biological Technology Co., Ltd (Hebei Gerunde). The company focuses on the R&D and production of amino acids. Its products include glycine, L-lysine hydrochloride, DL-methionine, L-threonine, L-glutamine acid, L-cysteine, L-cysteine hydrochloride, L-alanine and DL-alanine, with the certificates of FSSC22000, ISO22000, ISO9001:2008, Kosher and Halal.

2. Situation of glycine

Year	2023		2022		2021		2020		2019	
	Tech- grade	Others								
Capacity, t/a	22,000	30,000	22,000	30,000	22,000	30,000	22,000	30,000	22,000	30,000
Output, tonne	5,000	7,200	5,000	7,000	5,000	7,500	5,000	7,300	5,000	6,200

Table 5.8-1 Capacity and output of glycine in Hebei Huaheng, 2019–2023

Note:1. Others include food-grade, feed-grade and pharmaceutical-grade. 2. Capacity and output of glycine of Hebei Gerunde Biological Technology Co., Ltd. are included;

Source:CCM

Hebei Gerunde, Hebei Huaheng's brother company, began to build 22,000 t/a tech-grade and 20,000 t/a food-grade glycine production facilities in 2014, which were put into operation in 2017. Hebei Gerunde proposed a technological transformation project (adjusting 20,000 t/a food-grade glycine to 10,000 t/a food-grade glycine, 5,000 t/a pharmaceutical-grade glycine, and 5,000 t/a guanidinoacetic acid) in August 2020, which had not been completed by 2023.

5.9 Shandong Zhenxing Chemical Industry Co., Ltd.

Address: No. 1739 Luxing Road, Huanglou Town, Qingzhou City, Shandong Province 262517, P. R. China Tel: +86-536-3531025, 3532868 Fax: +86-536-3531264 Person to contact: Mr. Zhu E-mail: 401954173@qq.com Website: www.sdzxhg.com

1. Company background

Shandong Zhenxing Chemical Industry Co., Ltd. (Shandong Zhenxing, formerly known as Shandong Zhenxing Chemical Plant), was established in 1985 and covers an area of 46,000 square meters. The company engages in the production and sale of white carbon black, glycine (10,000 t/a), hydrochloric acid (12,000 t/a), chloroacetic acid (15,000 t/a) and aqueous ammonia (1,800 t/a).

2. Situation of glycine

Table 5.9-1 Ca	pacity and ou	tput of glycine	in Shandong	Zhenxing, 2019–2023

Year	2023	2022	2021	2020	2019
Capacity, t/a	10,000	10,000	10,000	10,000	10,000
Output, tonne	1,000	1,000	500	1,000	1,000
Source:CCM					

Source:CCM

Shandong Zhenxing produces tech-grade glycine only. All of its tech-grade glycine is sold to domestic companies.

5.10 Hebei Huayang Biological Technology Co., Ltd.

Address: No. 645 Fuyang East Road, Jizhou District, Hengshui City, Hebei Province 053200, P. R. China Tel: +86-318-8638866, 8638886 Fax: +86-318-8638856, 8638858 E-mail: trade@huayangchems.com Website: www.huayangchems.com

1. Company background

Hebei Huayang Biological Technology Co., Ltd. (Hebei Huayang, formerly known as Jizhou Huayang Chemical Co., Ltd.), was established in April 1987. The company mainly produces amino acid series products, including glycine, lysine salt, L-threonine, DL-methionine, D (L) L-cysteine and other food- and pharmaceutical-grade amino acid products. It obtained the import and export license in Sept. 2001, and the certificates of Kosher and Halal in Aug. 2002 and ISO9001:2000 in Sept. 2002.

2. Situation of glycine

Year	2023		2022		2021		2020		2019	
	Tech- grade	Others								
Capacity, t/a	6,000	11,000	6,000	11,000	6,000	11,000	6,000	11,000	6,000	11,000
Output, tonne	3,000	10,000	3,000	10,000	3,000	10,000	3,000	11,000	5,000	10,000

Table 5.10-1 Capacity and output of glycine in Hebei Huayang, 2019–2023

Note:Others include food-grade, feed-grade and pharmaceutical-grade. Source:CCM

Hebei Huayang purchased tech-grade glycine to produce food-grade glycine and pharmaceutical-grade glycine before 2008.

In March 2008, its new 6,000 t/a tech-grade glycine unit was put into production. Since then it has started producing all the four grades of glycine.

Cangzhou Huachen Biological Technology Co., Ltd., a subsidiary of Hebei Huayang, was established in Oct. 2017. It proposed to construct a glycine project (30,000 t/a tech-grade, 30,000 t/a food-grade) in Dec. 2019. The first phase of this project (30,000 t/a tech-grade) had been completed and put into production in Nov. 2021, and the second phase of the project will no longer be carried out.

Kcomber's legal disclaimers

1. Kcomber guarantees that the information in the report is accurate and reliable to the best of its knowledge and experience. Kcomber defines the report as a consulting product providing information and does not guarantee its information is completely in accordance with the fact. Kcomber shall not have any obligations to assume any possible damage or consequences caused by subscribers' any corporate decisions based upon subscribers' own understanding and utilization of the report.

2. The complete copyright of the report is and will be held by Kcomber. Subscribers shall not acquire, or be deemed to acquire the copyright of the report.

3. The report provided by Kcomber shall be only used as source of subscriber's internal business decisions and shall not be used for any other purposes without Kcomber's prior written consent, unless stated and approved in license contract signed by both parties. Subscribers shall not distribute, resell and disclose the whole report or any part of the report to third parties and shall not publish any article or report by largely or directly copying or citing the information or data based on Kcomber's report without the prior written consent of Kcomber.

4. "Single User License" means that there shall be only ONE person to receive access and utilize the report. Subscriber can present the content of the report that marked the source from Kcomber to their internal colleagues for their internal communication and utilization, but cannot share the whole report to other individuals. Any citation, distribution, reselling and disclosure of the report as well as its partial content to any third party are prohibited, including but not limited to their parent companies or subsidiaries.

5. "Corporate License" means that subscriber shall not cite, distribute, resell the report or disclose information of the report to any third party without Kcomber's prior written consent, except subscribers' affiliates controlled with ownership of more than 50% of shares.

17th Floor, Huihua Commercial & Trade Building, No. 80 Xianlie Zhong Road Guangzhou,

510070, P.R.China

Website: http://www.cnchemicals.com

Tel: +86-20-37616606

Fax: +86-20-37616968

Email:econtact@cnchemicals.com